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Abstract

We demonstrate that wavelet analysis provides deeper information about the phenomena of quantum
recurrences. We apply our analytical results based on continuous wavelet transform (CWT) to modify
the resolution of Recurrence tracking microscope (RTM). The information of frequency bands and
corresponding fractional revivals make it advantageous to read time of revival and fractional revivals
more accurately. Our analytical results show very good agreement with numerical results based on
experimental parameters.

Keywords: wavelets,multiscale modeling,recurrence tracking microscope,revival time.

1 Introduction

Position sensors with nano meter resolution is a major area of current research and has achieved a
good attention from scientific community [1–4]. Historically, development of electron microscope and
scanning probe microscope (SPM), separately based on imaging and sensing of a given sample surface
respectively, has been rewarded with Nobel Prize in 1986 [5].

Resolution enhancement of optical microscopes beyond diffraction limit has been acknowledged by
Nobel Prize in 2014 [6]. Optical microscopes with enhanced resolution have problem of heating the sample
and may damage a sample due to long exposure times. Scanning tunnelling microscope (STM) based on
quantum tunnelling phenomena probes a surface with high accuracy [7,8]. It can not work for conducting
and non-conducting surfaces in the same way, moreover impurity atoms introduce unwanted structures
in scanning. Atomic force microscope (AFM), another important number of SPM, has problem due to
diffraction limit.

In 2006, Recurrence Tracking Microscope (RTM), based on the phenomena of quantum recurrences,
is suggested [9] which have advantages over STM and AFM. In RTM quantum evolution of a wave packet
shows revival behaviour and reappears when it displays maximum constructive interference and therefore
partially or completely regains its initial form during temporal evolution. The phenomena of quantum
revival have been studied over the past decades in un-driven [10–13] and driven systems [14].
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In signal processing the frequency domain of a signal g(t) can be obtained by using Fourier Transform
(FT) [15],

g(ω) =

∫ +∞

−∞
g(t)e−2πiftdt. (1)

The FT provides the representative frequency components involve in power spectrum of a signal. However,
FT does not give information of time and frequency simultaneously. This is the main drawback of the
FT in the analysis of a multiple components signal. In case of multiple component signal it seems more
beneficial to reconstruct each component of signal across its frequency. In order to obtain time-frequency
representation of a signal simultaneously [16,17].

The wavelet transform is applied to identify nano topography of crystal surfaces [18, 19] and used
for the determination of the birefringence dispersion in optical fibres [20]. Further it has been shown
that the use of the wavelet transform can be very effective with atomic force microscope (AFM) data
analysis [21]. The wavelet transform is also a very useful technique in filtering of low frequency structures
in STM [22], to extract weak signals from a high noise background [23], in analysing quantum wave packet
dynamics [24,25] and in quantum field theory [26–29].

In our work we use the method of continuous wavelet transform (CWT) for the time-frequency analysis
of a material wave packet in RTM [11, 12]. We reconstruct each time harmonic of the material wave
packet across its frequency, which on one hand increases the conceptual understanding of the quantum
recurrences and on other hand increases the resolution of RTM. The CWT, Tg(t)(f, τ), of a signal g(t)
can be defined as,

Tg(t)(f, τ) =

√
f

f0

∫ +∞

−∞
g(t)h∗

[
f

f0
(t− τ)

]
dt,

h(t) is known as mother wavelet [16] and the ratio
(
f0
f

)
is the scaling parameter. Let us assume that the

wavelet is centred at time zero and oscillates with frequency f0. The wavelet basis function h
[
f
f0

(t− τ)
]

has a variable length and width according to frequency f at different stages τ of the signal. The resulting
2D square magnitude display of the transformed function Tg(t)(f, τ) is known as scalogram.

h(t) = π−1/4e2πif0te−t
2/2,

where f0 is the central frequency of the wavelet. To construct the translated and dilated Morlet wavelet
we replace t by f

f0
(t− τ) to get,

Tg(t)(f, τ) = π−1/4

√
f0
f

∫ +∞

−∞
g

(
τ + ζ

f0
f

)
e−if0ζe

−1
2
ζ2dζ,

where ζ = f
f0

(t− τ) and Tg(t)(f, τ) is CWT for a signal g(t) by using Morlet wavelet. The layout of paper
is as follow: In section-II we briefly explain RTM and calculate the auto-correlation function associated
with matter waves. In section-III the time-frequency representation of auto-correlation function is carried
out using CWT. We dedicate section-IV to explain the resolution enhancement in RTM by applying the
developed time-frequency analysis.
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2 Temporal Evolution in RTM

A material wave packet in its time evolution, manifests de-coherence and coherence phenomena as
it experiences destructive and constructive interference that leads to quantum recurrences. As the wave
packet follows classical evolution it reconstructs itself after a classical period, Tcl. Thereafter, the wave
packet dynamics displays a gradual increase in destructive interference that leads to periodic collapse.
We observe recurrence phenomena in the long time domain which are the manifestation of constructive
interference [10].

In Recurrence tracking microscope we propagate a material wave packet which experimentally repre-
sents a cold caesium atom moving under the gravitational field [11–13]. The atom bounces over an atomic
mirror made up of an evanescent wave above a dielectric surface which is connected with a cantilever.
The other end of the cantilever probes the unknown surface. For simplicity we take exponential potential
of the evanescent wave as an infinite potential [30, 31]. In order to calculate the temporal evolution of
the wave packet we calculate auto-correlation function, defined as

A(t) =
∑
n

|an|2e−iEnt/~. (2)

Here, the probability amplitude an can be obtained mathematically [33] and En defines energy eigenvalue.
The energy eigenvalue associated with the triangular well potential can be defined as,

En =

(
F 2~2

2m

)1/3

zn, (3)

where zn are the zero’s of Airy function [32] and F = mg. In case of large quantum number it can be

approximated as zn =
[
3π
2 (n− 1/4)

]2/3
. Since the distribution |an|2 is peaked around average quantum

number n0, therefore we expand the energy eigenvalue around the average quantum number n0, such
that ∆n = n− n0 << n0 [10], we have

En ∼= En0 +
2π(n− n0)

Tcl
+

2π(n− n0)2

Trev
, (4)

where we have ignored higher powers. The corresponding classical and quantum revival times for RTM

are Tcl = 2
√

2mz0
F and Trev =

16mz20
π~ , respectively [12].

In order to study the time evolution we calculate the absolute square of the auto-correlation function
defined as,

g(t) =
∑
n,m

|an|2|am|2e−iEnmt/~, (5)

where Enm = En − Em. The auto-correlation function for the material wave packet for a certain fixed
position of the cantilever is shown in Fig. 1(a). In next section, we explain revival and fractional
revivals in time-frequency domain and plot scalogram, which localizes them in time-frequency plane and
determines their order.
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3 TIME-FREQUENCY ANALYSIS

The continuous wavelet transform (CWT) for the auto-correlation function g(t) given in equation (5) is
obtained as,

Tg(t)(f, τ) = π−1/4

√
f0
f

∑
n,m

|an|2|am|2e−iEnmτ/~Inm, (6)

where Inm =
∫ +∞
−∞ e

− iEnmf0ζ
f e−2πif0ζe

−1
2
ζ2dζ. By solving Inm and using Taylor’s series expansion of energy

eigenvalues for n and m, as given in equation (4) the CWT, Tg(t)(f, τ) gets form as,

Tg(t)(f, τ) = v
∑
n,m

| cn,m |2 e−ixnmτrn,m. (7)

where v = π−1/4
√

2πf0
f , xnm = 2π(n − m)

[
1
Tcl

+ n+m−2n0
Trev

]
, | cn,m |2=| an |2| am |2 and rn,m =

Exp
[
−1

2

(
2πf0 + f0

f xnm

)]2
.

We perform a frequency domain analysis of the auto-correlation by taking Fast Fourier Transform
(FFT). The Fast Fourier Transform (FFT) is an efficient algorithm of generating Fourier Transform (FT).
The main advantage of FFT is its shorter execution time [34], which it gets by decreasing the number of
calculations needed to analyses a waveform.

We plot the FFT of auto-correlation function, which provides frequency components that exist in
auto-correlation function, shown in Fig. 1(b). Each component of auto-correlation function can be
reconstructed across its frequency which helps to understand the role of frequency in quantum recurrence
phenomena. Across each frequency band, as shown in Fig. 1(b), there exists a time harmonic which can
be reconstructed by using CWT as given in equation (7).

The CWT, Tg(t)(f, τ), of the material wave packet maps partial fractional revivals across their corre-
sponding frequency bands as shown in Fig. 1(c). This manifests the role of favorable frequencies which
contribute to fractional revivals of the wave packet. The sharp peaks and neighboring patches in the
scalogram across different frequencies and times identify changes in amplitude of auto-correlation function
over time. Each sharp peak and corresponding patch appear in time-frequency distribution correspond
to a specific partial fractional revival of the wave packet.

The main advantage obtained from the continuous wavelet transform (CWT) is the reconstruction of
the auto-correlation function for specific frequency band and localization of fractional revivals in time-
frequency plane. It is important to note that the maximum value of the transformed function Tg(t)(f, τ),
as given in equation (7) is at f = −xnm

2π . Therefore we get,

f = (m− n)

[
1

Tcl
+
m+ n− 2n0

Trev

]
. (8)

By setting n = n0 and m = n0 + y, we get

f =
y

Tcl

[
1 + y

Tcl
Trev

]
. (9)

Under approximation Tcl
Trev

<< 1, the central frequency of each frequency band as shown in Fig. 1(b) and
(c) can be obtained as follow,

f =
y

2

√
g

2z0
, (10)
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where y is a positive integer such that y = 1, 2, 3, 4 . . . .
The coherent addition of terms as given in equation (6) would requires that the terms corresponding

to time dependent exponential is independent of n and m i.e, τEn,m = τEn′,m′ . Hence, the time τ at
which these terms add-up coherently to give a peak structure is,

τ =
s

2y
Trev, (11)

where s is an integer such that s = 1, 2, 3.... The central frequency of the lowest frequency band can be
obtained by setting y = 1 in equation (10). The time τ = (s/2)Trev corresponding to lowest frequency
band that defines specific set of partial fractional revivals as shown in Fig. 2(a). Similarly, the set of
partial fractional revival occurs across next frequency band(y = 2) corresponds to τ = (s/4)Trev are
shown in Fig. 2(b). This process can be extended for higher frequency bands as shown in Fig. 2(c)-(d).

Across each frequency band there is a specific set of the partial fractional revivals. Hence, we conclude
that equations (10) and (11) respectively, provide required resolution in frequency and measurement of
time to reconstruct fractional revivals in the auto-correlation function. A partial fractional revivals seem

Figure 1: (a) The auto-correlation function of a material wave packet in recurrence tracking microscope.
We placed a Gaussian wave packet at z0 = 5.65 µm with ∆z = 0.226 µm above the surface of the
optical crystal at t = 0 [11, 30]. For the case of caesium (Cs) atom corresponding classical and revival
times occurs at 2.14 ms and 348 ms, respectively (b) FFT of the auto-correlation function determines all
spectral components (c) Time-frequency representation of the auto-correlation function by using CWT,
which explains partial part of a fractional revival across corresponding frequency bands (|Tg(t)(τ, f)|2 is
scaled by 10−3).

to be more prominent, which help to identify exact location of a fractional revival. Time-frequency
analysis provides a detailed information about the role of constructive and destructive interference in
quantum recurrences. The constructive and destructive interference occurs among time series harmonics
as shown in Fig. 2(a)-(d), and results in periodic collapses and revival of the wave packet.
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Figure 2: The distribution |Tg(t)(τ, f)|2 is plotted in (a), (b), (c) and (d) for f = 0.467, 0.935, 1.401 and
1.869 (in units of KHz), respectively (|Tg(t)(τ, f)|2 is scaled by 10−3).

4 Resolution Enhancement in RTM

The change in initial height of atom above the atomic mirror modifies revival time. In RTM variation
of revival time during an experiment measures nano structures on the surface. The revival of the wave
packet, Trev, corresponds to the initial height z0 that varies as the cantilever moves up or down due to
the nano structures on the surface. The uncertainty ∆T in measurement of revival time is proportional
to the uncertainty in position of nano structures ∆z0. We express ∆z0 as,

∆z0 = γ∆T, (12)

where γ = z0
2Trev

. The uncertainty in position of the cantilever corresponds to better measurement of size
of nano structures on the sample surface. We write it as,

a = a1 + ∆z0 (13)

where a1 is the size of nano structures a with a certain uncertainty ∆z0. The uncertainty in partial
fractional revivals corresponding to higher frequency bands reduces drastically, which as a results make
the time of revival measurements more certain, this leads to a higher resolution in the measurements
of the size of nano structure, a. In Table 1, we calculate ∆T and ∆z0 for partial half-fractional revival
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Figure 3: (Left Panel) The peaks corresponding to partial half fractional revival are shown as a function
of time τ . The uncertainty around the revival time, ∆T is large for lowest frequency band (c), whereas
it reduces gradually for higher frequency bands as obvious in (b) and (a). (Right panel) A section of the
scalogram shows partial half-fractional revival in frequency-time plane.

S.No Frequency(KHz) ∆T (ms) ∆z0(nm)

1 0.46 ∼= 5 ∼= 4

2 0.93 ∼= 2 ∼= 1.96

3 1.8 ∼= 1 ∼= 0.9

4 3.6 ∼= 0.7 ∼= 0.68

Table 1: We tabulate the uncertainty, ∆T , in partial half-fractional revival calculated at (3/4)|Tg(t)(τ, f)|2
and ∆z0 is the corresponding uncertainty in measurement of size of nano structure across relevant fre-
quency bands.

across various frequency bands. It has been observed that across higher frequency bands ∆T and as a
consequence ∆z0 gradually decreases that makes partial half fractional revival more localized around its
occurrence time as shown in Fig. 3(a)-(d).

We operate the device around four different values of frequency as shown in Table. 1. As we switch
the device to higher frequency the quantity ∆z0 reduces,and hence as a result the resolution of RTM
becomes better.
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