ResearchGate

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/272804749
Parallel Sequential Searching Algorithm for Unsorted Array

Article in Research Journal of Applied Sciences - January 2011

DOI: 10.3923/rjasci.2011.70.75

CITATIONS READS
4 2,300
2 authors:

3 Ahmad Haboush 8 Sami Qawasmeh
15 PUBLICATIONS 55 CITATIONS Jadara University

8 PUBLICATIONS 21 CITATIONS
SEE PROFILE

SEE PROFILE

Some of the authors of this publication are also working on these related projects:

ot Searching View project

All content following this page was uploaded by Ahmad Haboush on 17 September 2018.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/272804749_Parallel_Sequential_Searching_Algorithm_for_Unsorted_Array?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/272804749_Parallel_Sequential_Searching_Algorithm_for_Unsorted_Array?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Searching-2?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Haboush?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Haboush?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Haboush?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Qawasmeh?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Qawasmeh?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Jadara-University?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Sami-Qawasmeh?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Ahmad-Haboush?enrichId=rgreq-30ace9a92ce8ffd85c9cfad447606d22-XXX&enrichSource=Y292ZXJQYWdlOzI3MjgwNDc0OTtBUzo2NzE3MzM3NTc1MDk2NDRAMTUzNzE2NTIxNjE2MA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Research Journal of Applied Sciences 6 (1): 70-75, 2011
ISSN: 1815-932X
© Medwell Journals, 2011

Parallel Sequential Searching Algorithm for Unsorted Array

Ahmad Haboush and Sami Qawasmeh
Department of Computer Science, Faculty of Science, Jerash University,
P.O. Box 311, 26110 Jerash, Jordan

Abstract: Parallel search is a way to increase search speed by using additional processors. Researchers propose
a parallel search algorithm that searches an item in unordered array, the searching time obtained is better than
that obtained in binary search. That 1s justified by the fact that the binary search requires a variant time for
sorting the input array. The speed up of the proposed algorithm is increased linearly with the input size by
saving the time spent in sorting input data. In the proposed algorithm, the array to be searched 1s divided into
two subarrays and then, two search threads are created in parallel which required O (n/2) in the worst case
(where all the items 13 scanned), reducing the searching time in the worst case to O (n/2+log n). Log n 1s the time
needed to splitting an array of size n. The efficiency is increased quickly for an input size of 5000-1,000,000 item.
However, the efficiency suffers a little variation for an input size of 1,000,000-5,000,000 item that is because the
binary search has an optimal runming time for large sorted input size where the searching space 1s reduced by
a factor of 2 each tume.

Key words: Parallel computing, searching algorithms, binary search, parallel multithread search, sorting

efficiency, splitter-based searching, efficiency

INTRODUCTION

In the information age, the huge amount of
mformation and data available and exchanged, require a
fast and efficient searching mechanisms for effective use
of this information. Generally, to find an item in an
unordered array of size n, it’s used one of the following
approaches: Scans all the values that require O (n) time.
Using a sorting algorithm like (Quicksort, Bubble sort,
Binary Tree sort...) (Williams, 1964, Knuth, 1997
Cormen et al., 2001) that varies in complexity from O (n log
n) in the best case te O (n?) in the worst case. Moreover,
the memory usage for searching these items varies from O
(1) to O (log n).

Using Heapsor that performs better than Quicksort or
other sorting algorithms, 1t takes O (n log n) 1 the worst
and best case (Williams, 1964; Knuth, 1997, Cormen ef al.,
2001). In cases (2, 3), a searching mechanism is used
subsequently to find the location of the searched
item. Searching algorithms are techniques used to make
the searching of an information in any field fast and more
efficient. Searching problem is defined as follow: given an
input x determines whether there exists a y such that
f (%, y) 1s true.

Bmary search 1s an algorithm for locating the position
of an element x in a sorted list. Tt starts by dividing the
array into subarrays L., R. Then, a comparison between the

value of x and the values of the first elements m each
subarray is done and to define in which subarray the
searching process must start. This procedure (splitting
and comparing) continues until finding the requested item
(this procedure continue at most log n time). The idea on
which the binary search algorithm based on is to reduce
the searching space each time by a factor of two, the
worst case performance of binary searching is log n for an
input array of size n (Knuth, 1997; Cormen et al., 2001,
Williams, 1964).

Parallel search or multithread search (SMP) 1s a way
to increase search speed by using additional processors.
Utilizing these additional processors is an interesting
domain of research. SMP algorithms are classified by their
scalability (that means the behavior of the algorithm as
the number of processors become large) and their speed
up. The speed up 15 defined as the ratio of the rumming
time of the sequential execution to the running time of the
parallel execution. Tt is mostly used as an indicator for a
parallel program’s performance (Cormen et af., 2001).

In this study, we propose a new parallel search
algorithm that performs better than the binary search in
terms of running time. The algorithm works on an
unsorted array saving in that the time spent m sorting. In
binary search algorithm, the time needed to search an item
is the time needed for sortingttime needed for
splittingtsearching time. That is equal to (n+2) log n in

Corresponding Author: Ahmad Haboush, Department of Computer Science, Faculty of Science, Jerash University,

P.O. Box 311, Jerash 26110, Jordan

Res. J. Applied Sci., 6 (1): 70-75, 2011

the best case and O (n*+2) log n in the worst case. In the
algorithm, initially the array is divided into two subarrays
and then two processors search them m parallel that
require O (1/2) in the worst case (where all the items 1s
scanned), reducing the searching time in the worst
case to O (n/2+ log n). Log n is the time needed to
splitting an array of size n. To insert an item in sorted
array, the correct location must be found. In the algorithm
the item can be inserted in any location. Tt outperforms
the performance of binary search in the case where n is
an odd number. In this case, the array 1s split into two
subarrays of size (n-1/2), n/2. However, in binary search
the problem of odd number continues for each splitting
operation until finding the searched item.

Multithreaded search SMP has been gaimning
popularity recently with the availability of multiprocessor
computers. It is widely used in traversing a search tree.
In (Koorangi and Zamanifar, 2007), it is applied the
parallelism on genetic algorithm to find an optimization
methods. The genetic algorithm 1s appropriate for this
purpose because it is independent of the primary values
of a system and because it is independent of the system’s
objective function properties. In addition, it allows
searching of greater space of the parameters values.

Binary search tree is a binary tree whose nodes are
organized according to the binary tree property. The time
required to search a given key can vary from tree to tree
depending on the depth of the node where the key 1s
found or on the length of the branch searched. An optimal
binary search tree is a binary search tree with minimum
expected comparisons. Depend on special set of keys (C))
and their possibilities (P,), the optimization of binary
search tree in minimizing the relation X%, CP,. The
parallel genetic algorithm 18 used to reduce the time
needed to find an optimal solution for binary search tree
because considered the function C, P, as fitness
function and the chromosomes of the genetic population
is used as keys.

In executing of the genetic algorithm
chromosome shows a value of k its length should not
exceed a determined length depending on the number of
keys. Also, the maximum of the genetic population for
each processor must be defined. The type of cross over
used 15 the common single pomt method. For creating the
intermediate population and for selection of the parents
it is used the Roulette Wheel method. The algorithm
execution has time cost O (n) ignoring the genetic
algorithm time. If a processor 1s allocated a process, the
cost will be O (n®/N). Experimental results show that the
speed-up is increased with the number of processors.
Chaslot et al. (2008) discussed the use of three
parallelism methods are leaf parallelism, root parallelism

each

71

(Cazenave and JTouandeau, 2007) and tree parallelization
method for Monte Carlo Tree Search (MCTS). MCTS
{Coulom, 2007, Kocsis and Szepesvari, 2006) 1s a best first
search method that does not require a positional
evaluation function. Tt is based on randomized exploration
of the search space. In leaf parallelization (Cazenave and
Jouandeau, 2007) is used on thread that traverses the tree
and adds one or more nodes to the tree until reaching leaf.
Then, starting from the leaf simulated games are played
for each available thread. When all games are finished, the
results of all these simulated games are propagated
backwards through the tree by one single thread.

In this technique, the time required for simulated
game is unpredictable to decrease the waiting time, the
program might stop the simulations that are still runming
when the results of the finished simulation become
available. In root parallelization (Cazenave and Jouandeau,
2007), multiple MCTS tree are built in parallel with one
thread for tree. The threads do not share mformation with
each other. When the available time 1s spent all the root
children of the separate MCTS tree are merged with their
corresponding clone. For each group of clones, the scores
of all games played are added.

The best move 1s selected based on this grand total.
This parallelization method only requires a minimum
So, the
parallelization 1s easy even on a cluster. In tree
parallelization (Chaslot ef al., 2008) 13 used one shared
tree from which several simultaneous games are played.
Each thread can modify the information contained in the
tree. Mutexes (mutual exclusion) are used to lock from
time to time certain parts of the tree to prevent data
corruption. To evaluate the performance of the tree
parallelization it is used the Games-Per-Second speed UP
(GPS) that is computed by dividing the number of
simulated games per second performed by multithreaded
program by the number of games per second played by a
single thread program. The results show that for leaf
parallelization, the GPS speedup 1s increased with the
number of threads 13 quite low. However, the root
parallelization is a quite effective way of parallelizing
MCTS.

But for four processors threads, the strength speed
up 1s sigmficantly higher than the number of threads
used For tree parallelization the GPS speed up obtained
is satisfied. However, the strength speed up obtained up
to four threads is satisfactory but for 16 threads it is
insufficient.

Gayatri and Baruah (2008) proposed a parallelization
of the Breadth First Search (BFS) algorithm to reduce the
searching tume for a vertices and paths. The BFS explores
the edges of a graph to find all vertices reachable from the

amount of communication between threads.

Res. J. Applied Sci., 6 (1): 70-75, 2011

root and produces an array that gives the level of vertex.
Gayatri and Baruah (2008) stored the adjacent vertices of
a given vertex all of wlich are inserted n the list of
vertices that must be visited at the current level. Then,
theses vertices are distributed among processors
reducing in that the inner processor communication and
the latency mn finding the requested vertex. Bonacic ef al.
(2008) used the parallelism to reduce the time to find the
top R-results for a user query in a web search engines.

Web search engine works as follows, after the user
1ssue a request, two operations fetching and ranking are
done to find the user’s request. The ranking phase takes
more resources when the number of user and data are
increased the resources available become insufficient. For
that 1t uses a hybrid parallelization mechamsm that 1s
based on a mice MPI (BSP) open MP programming model
in which the selection of top-R results for a query is done
in parallel using open MP threads, reducing in that the
total runming time under high traffic scenarios.

That 18 done by putting T threads to research on the
document ranking phase of a group of queries being
processed altogether at the same mode in a given period
of time with Q>T (this 15 done mn parallel). The results
show that the speed up achieved m the heavy ranking
phase for two nodes with higher or moderate query traffic
increases with the number of threads. In addition, it is
possible to achieve efficiencies near to 85% 1n a particular
system with 32 nodes. Marin ef al. (2003) compared
different parallelism mechanism for searching in suffix
array.

Suffix array are based on binary searching given a
text collection, the suffix array contains a pomters to the
initial positions of all retrieval strings. For example, all the
word beginnings are used to retrieve words and phases or
all the text characters are used to retrieve any substring.
These pointers identify both documents and positions
within them. Each such pointer represents a suffix which
is the string from that position to the end of the text. The
array 1s sorted in lexicographical order by suffixes. The
efficiency of parallelization of suffix array is involved
because its element points to random text position that
covers the whole collection. The obvious way is to
produce an independent suffix arrays in each processor
and broadcasting every query to all processors.

Marin et al. (2003) compared the running time of the
sequential suffix array, local suffix array where suffix array
constructed in every processor and lexico suffix array that
15 global array partittioned in p pieces and distributed on
different processors in order. Vlexico is similar to lexico
but the distribution of pieces is done in circular manner
AITLONg Processors.

72

Global is similar to local but the search in this
strategy continues in the other processors if a given
query 1s not found. The results show that global performs
are better than the other algorithms for four processors.
However, local is the worst one in the running time but it
is very efficient in communicating hardware compared to
the others. Digalakis and Margaritis (2003) used the
parallelism to reduce the runmng time of seral
evolutionary algorithms. Evolutionary algorithm is a
powerful tool used to find near optimal solution of
complex problems within a relatively little amount of time
compared to the problem’s very large search space. EA
follows the rules of nature that fittest individuals of
current population survive and are chosen to reproduce
the next generation.

There 1s a little chance that some individuals with
small fitness will be chosen for reproduction and that
mutation may take place to provide diversity to
population. These processes keep going on until the
solution 1s found or the criterions are met. The use of
these techniques results in a population with higher
average fitness for each generation.

EA has some problems for a huge amount of
computation time. For that parallelism 13 mtroduced to
solve this kind of problems. Since, fitness evolution is
inherently independent, the most intuitive implem entation
of parallelism is to divide the population mto several
chunck of equal size and distribute each of them to every
processor who calculates the fitness of each individual in
the assigned chunk. As each processor performs
selection and crossover operation mdependently on its
own population and only exchanges individuals
occasionally the communication overhead is lower. The
results show that for a large population size and long
evolution time, the speed up is increased linearly with
number of processors.

SEQUENTIAL PARALLEL SEARCH
ALGORITHM (SPSA)

Algorithm description: The research is based on
reducing the time needed to search an item in unordered
array located in any location. Searching unordered array
saves the time needed for sorting and reduces the number
of comparisons needed.

SPSA works as follow: For a given input data A with
size n, the array A 1s divided into two subarrays A, A,
each with size n/2. If n 18 odd number the array 1s divided
into subarrays of size n/2, (n/2+1. To each subarray a
processor P, is assigned to A jand P ,is assigned to A .,
The two processors start searching the requested item in
parallel from the leftt When one of the two processors

Res. J. Applied Sci., 6 (1): 70-75, 2011

i=0 A N=2 i=19
[a]3[s8]0o] 2 |i]1]76] 3[5]|78]12] 34 [56] 90]70] k | p [0]M]

AT A2
Al
[a] 3[s58[100] | i] 1]76] 3]5|
A2
[78[12] 34 [56[90[70] k [P | O] M|
A

[a] 3[58]100] & [] 1f76] 3[5]

A2
[78]12] 34 [s6] 90]70] K [0] M|

Al
[a] 3]58]100] ¢ [i] 1]76] 3]5]

Fig. 1: Example of searching machanism in SPSA

Table 1: Running time comparison of an array of size n
SPSA

Comparison running time _ Binary search running time

Sorting - Vary fromn? ton logn

Array division Logn Logn

Searching in the worst case 1n/2 Logn

Total running time n/2tlogn Vary from n’t2log n to
m+2) logn

finds the requested item, it sends a message to the second
processor and the searching operation 1s stopped. In the
research we can find the following cases:

» If the requested element is not found m A (worst
case), the two processors scan all the n/2 items and
the searching time 1n this case 18 O (/2). The number
of comparison is n

» If the item 1s repeated in the array, the first processor
that finds it, it informs the other about that and the
searching process is ended

¢ The best case run time of the algorithm is O (1)

The algorithm has a good performance in term of
insertion because the new item can be inserted in any
location and the searching time complexity does not
change. SPSA outperforms the binary search algorithm in
searching an item for the first time where bmary search
sorts the array before searching. Despite, the binary
search has optimal running time in searching sorted array
where the searching space is reduced to half in each step
until finding the requested item. The algorithm has a fixed
performance for searching and insertion. The worst case
running time in binary search varies from (n*+log n) to
(n+1) log n that depending on the sorting algorithm used.

73

For large number of n, this complexity is high.
However, the running time of SPSA in the worst case is
fixed and 1s O (1/2) that 1s much lower than binary search.

Example: Figure 1 shows an example of an array A of size
n = 20. SPSA divide A into two subarrays A,, A, P, is
assigned to A, and start searchung from the left from
1= 0ton/2. P, starts searching A, from 1= (0/2)+1 to 19.
The searching item is j.

Complexity analysis: Table 1 shows a comparison
between the runming tume of the algorithm SPSA and the
runming time of binary search algorithm. It is clear that the
running time of SPSA is the better than the running time
of binary search algorithm n the worst case.

SIMULATION RESULTS

SPSA 18 mplemented using Visual Basic 6 on
stand-alone PC with Pentium III processor running at 800
MHz under windows XP platform. The parallelism is
simulated using timer controls for the representation of
multiprocessors environment where each control
represents a single processor. On the same mfrastructure
the binary search algorithm is implemented and a
comparison of the munning time of both algorithms is done
taking in consideration the following points:

¢+ In SPSA is calculated the time needed for splitting
and searching separately and the total running time
1s the sum of these 2 times

» Inbinary search is considered the time of sorting and
searching separately and the running time is the sum
of these both times (the sorting algorithm used 1s
Quicksort)

In the research two cases are considered: true case

where the item 13 in the array and the false case where the
itemn 1s not in the array. From Table 2 and 3 1t 1s clear that
the searching time increases linearly with the size of items
in both cases. Comparing the results shown in Table 2
and 3 researchers can conclude that SPSA outperforms
the performance of binary search.
Performance analysis: In parallel systems, two
parameters are used to study the efficiency of parallel
systems: the speed-up that indicates the factor by which
the execution time for the application change and is
calculated as follow:

Execution time for one processor

Speed-up (Accelerator) = —
Execution time for P processors

Res. J. Applied Sci., 6 (1): 70-75, 2011

Table 2: Running time of SPAS and binary search in true case

SPSA running Binary search
No. of itemns time (m sec) running time (m sec) Speed-up
5000 18.52500 69.30800 3.740
50,000 66.40500 554.6860 8.350
500,000 238.2810 6.085937 25.54
1,000,000 480.5390 12906319 26.80
5,000,000 2.550781 71.390261 27.98

Table 3: The running time of SPSA and binary search in the false case

SPSA nunming) Rinary search running
No. of items time (m sec) time {m sec)
5000 19.53000 109.37300
50,000 78.12400 570.31100
500,000 250.2810 6.3479370
1,000,000 492.2560 12.9180306
5,000,000 2.835935 71.675775

Table 4: The efficiency or 8PSA

No. of itemns Accelerator Efficiency (®0)
5000 3.740 1.870
50,000 8.350 4.170
500,000 25.54 12.77
1,000,000 26.80 13.40
5,000,000 27.98 13.99
0.77 —— Efficiency
0.6
> 0.54
8 044
o2
3 0.34
0.2
0.14
5 50 500 1000 5000

No. of items *1000

Fig. 2 The efficiency fo SPSA over binary search
algorithm

Table 2 shows the speed up of the system in the true
case. The speed up increases linearly with the mumber of
items but the increasing ratio is lugh for small mput size.
Binary search performs better when the input data is
mcreased. The second parameter used m evaluating the
performance of the parallel systems is the efficiency that
is the accelerator/ No. of processors %. Table 4 shows
the efficiency of the system considering that the mumber
of processors used 1s 2.

Comparing Table 4 and Fig. 2, we can note that the
efficiency of the system over the binary search increases
linearly when the mumber of item mcreases. But for a large
mput size the variation mn efficiency 1s low for (1,000,000,
5,000,000 item) and that because the binary search
performs better for large input size. Given that the system
1s scalable because its performance 1s not degraded with
the mcreasing in the mput size and it gives a good
efficiency.

74

CONCLUSION

In this study researchers propose a parallel searching
mechamism SPSA in which the idea 1s to eliminate the
need of sorting the input array in order to search an item.
The proposed algorithm works in unsorted array using
two processors that 1s search the two parts of the array in
parallel. To study the effectiveness of the system
researchers investigated and compared the running time
of the proposed algorithm SPSA with that of binary
search by conducting a series of simulation experiments
data to evaluate the performance of SPSA. The
experiments results confirm that the efficiency of the
proposed algorithm increases and the time needed to
search an item 1is reduced up to 26% for an mput size of
5000-1,000,000 items and up to 3.6% for large 1nput size.

The results shown in Table 2 show that the
performance of the algorithm is better than the binary
search because we have eliminate the sorting time which
1s required for the binary search. In addition, the algorithm
has fixed time complexity in the worst case. SPSA
algorithm outperforms the binary search in two aspects:
first having an odd input size does not mnfluence n the
time complexity.

However, in binary search this case persists for each
splitting operation. The second aspect is that inserting a
new item in the array in the algorithm an item can be
inserted in any location (head, tail, middle) and that does
not influence the searching time. Beside that the item can
be found in the array with same time complexity.
Nevertheless, in sorted array which is the bnary search
algorithm required, the item must be inserted n the correct
location to be found later by binary searching algorithm.

REFERENCES

Bonacic, E., C. Garcia, M. Marin, M. Prieto and F. Tirado,
2008. Exploiting hybrid parallelism in web search
engine. Proc. Int. Euro-Par Conf. Parallel Process,
5168: 414-423.

Cazenave, T. and N. Jouandeau, 2007. On the
parallelization of UCT. Proceedings of the Computer
Games Workshop, (CGW’07), Umversity of
Maastricht, The Netherlands, pp: 185-192.

Chaslot, G.M., MH. Winands and H.J. Herik, 2008.
Parallel monte carlo tree search. Proceedings of the
6th International Conference on Computer and
Games, Sept. 29-Oct. 1, Springer-Verlag, Beijine,
China, pp: 25-36.

Cormen, T., C. Leiserson, R. Rivest and C. Stein, 2001.
Introduction to Algorithms. 2nd Edn., McGraw-Hill
Book Company, Cambridge and New York.

Res. J. Applied Sci., 6 (1): 70-75, 2011

Coulom, R., 2007. Efficient selectivity and backup
operations in monte carlo tree search. Proc. Int. Conf.
Comput. Games, 4630: 72-83.

Digalalkis, J. and K. Margaritis, 2003. Parallel evolutionary
algorithms on message passing clusters.
http:/Awrww.it.uom.gr/people/digalakis/digamarg 200
3pdf

Gayatri, R K. and P.K. Baruah, 2008. Parallelizing breadth
first search using «cell broadband engine.
http://www . hipe.org/hipe2008/documents/HiPC-
3508-FmalPapers/15691 54967 pdf

Knuth, D., 1997. The Art of Computer Programming
Sorting and Searching. 3rd Edn., Vol. 3, Addison
Wesley, USA.

75

Kocsis, .. and C. Szepesvari, 2006. Bandit based
monte-carlo planning. Mach. Learn.. ECML.,
4212: 282-293.

Koorangi, M. and K. Zamanifar, 2007. Designing
optimal binary search tree using parallel genetic
algorithm. Int. J. Comput. Sci. Network Secur.,
7: 138-146.

Marin, M., J. Vega and R. Mirande, 2003. Comparative
study of parallel arrays algorithms.
Workshop Clileno Sistemas Distribuidos
Paralelismo, 2857: 311-325.

Williams, . W.JT., 1964, Algorithm 232: Heapsort. Commun.
ACM., 7: 347-348.

suffix

https://www.researchgate.net/publication/272804749

