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Abstract In this paper, local meteorological data for a period of 35 years (from 1979 to 2013) from
Kuujuaq station have been used to calculate the surface refractivity, N (a link for the data is available in
the acknowledgements), and to estimate the vertical refractivity gradient, dN1, in the lowest atmospheric
layer above the ground. Monthly and yearly variations of the mean of N and dN1 are provided. The values
obtained are compared with the corresponding values from the ITUmaps. The long‐term trend of the surface
refractivity is also investigated. The data demonstrate that the indices N and dN1 are subject to an evolution
that may have significance in the context of climate change. Monthly means of N show an increasing
departure from ITU‐R values since 1990. Yearly mean values of the dN1 show a progressive decrease over the
period of study. Seasonal means of dN1 show a decrease over time, especially for summer. Such a trend may
increase the occurrence of superrefraction. However, currently available ITU‐R recommendations for
microwave link design assume a stationary climate, so there is a need for a new modeling approach.

1. Introduction

This paper addresses issues in the design of terrestrial microwave links in Arctic regions that arise in the
context of climate change (CC). The study was motivated when the impact of an exceptional ice storm in
the Montreal region on electrical installations demonstrated the vulnerability of public and commercial
infrastructure to climate hazards (R‐3670‐2008, D, 2009). After the ice storm, the telecommunications team
of regional electricity generation and distribution company, Hydro‐Québec TransEnergie (HQ), recom-
mended that in addition to fiber optic links, microwave links are to be used in order to ensure continuity
of service under normal, as well as in catastrophic conditions (R‐3670‐2008, D, 2009). As a company involved
in the transmission and distribution of electricity, HQ questioned whether CC would have an impact on the
design methods for their microwave links.

Since 2008, HQ has used the ITU‐R P.530 Recommendations (Recommendations, I, 2017) for the design of
terrestrial links. They provided a method for calculating the incidence of narrow band fading due to
multipath propagation for small percentages of time at a given frequency anywhere on Earth.

It is well known that when radio waves propagate through a stratified atmosphere, refraction takes place. In
an ITU‐R Standard Atmosphere, the refractive index of air n(h) decreases exponentially with height h in
kilometers, causing rays to bend toward the Earth, thus extending the radio horizon. Nonstandard refraction
of radio waves can lead to significant variation in received power level (Ali et al., 2012; Zilinskas et al., 2012)
for both intended and unintended receivers. To obtain reliable communication links, several criteria, such as
antenna heights and gains, power levels, path profile, distance, geographical location, and atmospheric
conditions and properties must be considered in the design/planning phase.

The radio refractivity,N, measured inN units (Freeman, 2006; Guo & Li, 2000; related to n, see equation (2))
depends on the meteorological parameters, particularly temperature, humidity, and partial water vapor
pressure. Since these parameters vary with height, the refractivity will also vary with height and will, there-
fore, have a gradient dN/dh. Values of meteorological parameters are used to estimate the values of the
refractivity and the refractivity gradient. Even small changes in the meteorological parameters may lead
to a significant change of N and dN/dh (Ayantunji et al., 2011; Kablak, 2007; Priestley & Hill, 1985).
When such changes occur, they impact the radio link and may lead to reduced performance, that is,
increased error rate, reduced data rate, and reduced link availability, or even a total loss of the link. For
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example, Norland (2006) reported the loss of radar coverage when important changes in the meteorological
parameters occur while Serdega and Ivanovs (2007) reported a loss of microwave links with seasonal
variations that change the refractive index.

Climate parameters vary from one season to another, and in some geographical locations, they can be very
unstable (Pankauskas & Bukantis, 2006). There can be significant random variations year on year and may
be cyclic variations or longer‐term trends. Changes in the climatic parameters imply that the parameters N
and dN/dh may vary.

According to research conducted by the Intergovernmental Group on Climate Change (L. Gagno, 2000; Roy,
2014; Watson, 2001), the thermal regime and precipitation patterns could change significantly in the near
future, in particular at high latitudes. During the last three decades, there has been an increasingly rapid evo-
lution of CC. These changes are coupled with increasing probability of certain extreme events, like extreme
and frequent droughts and floods, and storms of rare violence (Climate Trends and Variations Bulletin, 2018;
L. Gagno, 2000; Ouranos, 2014). In this context, more and more scientific research has been dedicated to the
influence of this change on various aspects of life (L. Gagno, 2000). According to (Lemmen &Warren, 2004),
in a few years, the effects of CC will be observed in coastal areas of northern regions in the form of a
modification of the Canadian landscape and conversion of natural habitats (L. Gagno, 2000).

Some research has shown an increase in a 1.6 °C increase in themean annual temperature in Canada over the
period 1948 to 2010. According to these studies, this temperature increase is particularly due to higher and
higher temperatures in winter and spring. Although this trend is observed in the entire Canadian territory,
it is observed particularly in the Far North and regions located in high latitudes (“Climate Trends and
Variations Bulletin,” 2018). These new climatic conditions are likely to significantly affect the evolution of cli-
mate parameters and hence the atmospheric refractivity and may, therefore, affect the communication grid.

Considering the above mentioned, a study was proposed for the Canadian environment of climate data at
Kuujuaq station located in northeastern Quebec. The Kuujjuaq station is in the Arctic area. The climate
of the Arctic is characterized by long, cold winters and short, relatively warm summers. Precipitation occurs
mainly as snow, and the average of the observed rainfall is lowwith an average of 400mm in the year.Winter
temperatures range from −50 to 0 °C, while the average summer temperatures fall between −10 to 10 °C.
(ANON, 2018; UNIKTOUR.COM, 2018).

Note that this is the first study for the Northern Quebec region, which is characterized by a cold climate
throughout the year and precipitation is in the form of snow.

In the ITU‐R Recommendations (Recommendations, I., 2017), the geoclimatic factor, K, is defined for a
given location and climate. The percentage of time p0 at which deep, clear‐air multipath fading is observed
increases in direct proportion to K. The K factor, in turn, depends on the surface refractivity gradient not
exceeded for 1% of an average year (see equation (12)).

There are two approaches to obtain the refractivity profile. One approach consists of using radiosonde data
measured at different times of the day at various heights (Falodun & Ajewole, 2006). The second approach
consists of measuring the meteorological parameters at different times of the day at the surface and then
using some empirical formulas to estimate these parameters at a given height. In this paper, as we will see in
section 3, the second approach is used. The geoclimatic factor, K, required for the design of microwave links
may then be found.

Note that in cases where local data are not available, ITU tables provide estimated values of the radio refrac-
tivity and its gradient and also the geoclimatic factor (Canada, 2018; Climate Trends and Variations
Bulletin). However, it is recommended to consider local meteorological parameters for a given geographical
location, since as we will see later in this paper and in already published papers, the values provided by the
ITU maps can be significantly different from the actual local data. ITU‐R models are predicated on the
assumption of fixed, long‐term values for climate parameters.

To the best of our knowledge, in the literature, the temporal variability due to CC is not considered although
as shown in Agba et al. (2013), CCs can have a significant impact on radio propagation. Thus, the meteoro-
logical parameters are subject not only to seasonal variations but also to a temporal evolution (from one year
to another; Agba & Ali, 2012; Agba et al., 2011).
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The main contribution of this paper is to consider both the seasonal variation and the temporal evolution of
the meteorological parameters year on year and analyze their impact on the above‐mentioned indices used
during the design of the microwave link in arctic regions. This is achieved by using long‐term (35 years)
measured meteorological data in the Kuujuaq station (Quebec, Canada).

The rest of the paper is organized as follows. Section 2 provides a theoretical background. In this section, the
formulas used to estimate the refractivity gradient, the refractivity, and the temperature, pressure, and water
vapor at a given height are described. In section 3, the obtained results are analyzed, and some recommen-
dations are given based on this analysis. Section 4 highlights the conclusions.

2. Theoretical Background

The vertical refractivity gradient in the lowest part of the troposphere, immediately above the ground
surface, is used for the assessment of ray curvature, ducting, and multipath on terrestrial line‐of‐sight links.

The occurrence of these phenomena depends essentially on the pressure,
temperature, and relative humidity of the air. In the analysis, the
troposphere is viewed as a dielectric medium. Its refractive index, denoted
here by n, is determined by (Sizun & de Fornel, 2005):

n ¼ ffiffiffiffiffiffiffiffi
εrμr

p
; (1)

where εr is the relative permittivity and μr is the relative permeability. The
index n has a mean value around 1.0003, and variations of n at ground
level are very low (±10−5). However, these small variations cause radio
waves to bend significantly over paths of several kilometers and must be
considered. For this reason, another index called refractivity and denoted
here by N is used instead of n. These two indices are related by the follow-
ing relationship (Recommendation, I, 2017b; Sizun & de Fornel, 2005):

n ¼ 1þ N×10−6: (2)

The surface refractivity gradient dN/dh, which for convenience we denote
dN1, is determined by the following formula (AbouAlmal et al., 2013;
Abu‐Almal & Al‐Ansari, 2010):

Figure 1. Mean monthly variations of Ns (1979 to 2013).

Figure 2. Mean monthly variations of N in the first cycle.
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dN1 ¼ N2−N1ð Þ
h2−h1ð Þ ; (3)

where N1 and N2 are the refractivity values at heights h1 and h2, respec-
tively. In this paper we consider h2 = 65 m and h1 = 0 m.

The refractivity can be determined either by measuring it directly with a
refractometer or by calculating it from meteorological data. Equation (3)
shows a need to determine the refractivity at a given height. Therefore,
the following equation is used to determine the refractivity at height h
(Recommendation, I., 2017b):

N hð Þ ¼ 77:6
T hð Þ P hð Þ þ 4810

e hð Þ
T hð Þ

� �
; (4)

where P(h) is the total atmospheric pressure in hectopascals, e(h) is the
water vapor pressure in hectopascals, and T(h) is the absolute temperature
in Kelvin at height h in kilometers. The water vapor pressure in hectopas-

cals is determined by (Recommendation, I., 2017b):

e hð Þ ¼ ρ hð Þ:T hð Þ
216:7

; (5)

where ρ(h) is the water vapor density in grams per cubic meter. It is determined as (Recommendation, I,
2017a):

ρ hð Þ ¼ ρse
−h

2; (6)

where ρs is the water vapor density at the surface. There are several methods to determine ρs. In this paper
the following formulae have been used (Liebe, 1987):

ρs ¼
Hsθ6

5:752
10 10−9:834θð Þ; (7)

where θ= 300/TS andHS and TS are the relative humidity and the absolute temperature in Kelvin at the sur-
face, respectively. The relative humidityH(h) in percent at a given height, h, is (Recommendation, I, 2017b):

H hð Þ ¼ 100
e hð Þ
es hð Þ ; (8)

where es(h) is determined according to Jonhsnhweather (2018) by

es hð Þ ¼ 6:11×10
7:5t hð Þ

237:7þt hð Þ; (9)

where t(h) is the temperature T(h) converted to degrees Celsius. The
values of T(h) and P(h) are determined according to the recommendation
ITU‐R P.835‐6 using the following formula (Recommendation, I, 2017a):

T hð Þ ¼ Ts−6:5h: (10)

The following formula is used to determine the total atmospheric pressure
P(h) at a given height, h (Recommendation, I, 2017a), where PS is the pres-
sure in hectopascals at the surface.

P hð Þ ¼ Ps Ts= Ts−6:5hð Þ½ �−5:2558 (11)

In equations (10) and (11) the variable h is the height in kilometers above
the surface.

Figure 3. Mean monthly variations of N in the second cycle.

Figure 4. Monthly cumulative distributions of N (1979–2013).
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The geoclimatic factor, K, is an important design parameter. This factor is determined by
(Recommendations, I., 2017)

K ¼ 10−4:6−0:0027dN1 : (12)

The outage probability, Pw, is related to the geoclimatic factor as in Recommendations, I. (2017),

Pw ¼ Kd3:1 1þ εp
�� ��� �−1:29

f 0:8 10−0:00089hL−A=10
� 	

; (13)

where f is the frequency (gigahertz); A is the fade depth (decibel), and |ɛp| is the magnitude of the path
(milliradian):

εp
�� �� ¼ hr−hej j

d
; (14)

where hr and he are the antenna heights (meters) and d is the path length (kilometers).

In summary, a procedure that consists of the following main steps is used to estimate dN1:

1. N1 is the same as the surface refractivity (Ns). It is estimated according to equation (4) by setting h = 0.
2. The refractivity, N2 at height 65 m is estimated according to equation (4) by setting h = 65 m.

3. The vertical refractivity gradient, dN1, is calculated according to
equation (3).

3. Results and Analysis

The meteorological data used in this paper were obtained from the
Kuujuaq station. This station is situated on the northeastern part of
Quebec, and it is located at 58.1° latitude and −68.42° longitude, with
an altitude of 39.9 m above mean sea level.

From the Kuujuaq station local radiosonde meteorological data are not
available. Only local climatic data such as temperature, dew point
temperature, relative humidity, and pressure, at the surface, are available.
These climatic parameters can be found at the Canada Environment site
in the form of csv or xml files (Canada, 2018). In this paper for further
analysis, we converted these files to Excel files.

For the sake of this analysis, the year runs fromDecember to the following
November. For example, the year labeled as 2013 runs from December
2012 to November 2013.

Figure 5. (a) Monthly long‐term evolution of N; (b) monthly long‐term evolution of N.

Table 1
Correlation Between Monthly Values of N and Water Vapor and Correlation
Between Monthly Values of N and Temperature

Month

Correlation coefficient (ρ)

Water vapor Temperature

December ‐0.64 ‐0.81
January ‐0.75 ‐0.90
February ‐0.71 ‐0.84
March ‐0.63 ‐0.75
April ‐0.25 ‐0.49
May 0.54 0.16
June 0.77 0.41
July 0.95 0.70
August 0.95 0.59
September 0.92 0.62
October 0.77 0.52
November ‐0.05 ‐0.27
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For the sake of simplicity, analyses of the obtained results are divided into
three types, which are detailed in subsections 3.1 and 3.2 below, covering
surface refractivity and refractivity gradient, respectively.

3.1. Analysis of the Surface Refractivity

The mean monthly (Nmean 35 years) variation of surface refractivity, Ns,
averaged over the analyzed period of 35 years is shown in Figure 1.

Figure 1 shows that while temperature and humidity have an annual cycle with minima around
January–February andmaxima around July–August,Ns has two cycles per year. This occurs because, as seen
in equation (4), Ns has a strong “dry” and a weak “wet” component. The “dry” component proportional to
P/T varies inversely with temperature. The wet component varying with e/T2 is dominated by the humidity
variation and is thus “in‐phase” with the temperature cycle. When these components are added, the
January–February peak reflects a high dry component while the somewhat higher July‐August peak reflects
the high wet component.

The period from December to May (see Figure 2) belongs to the first cycle ofN. In this cycle, we found a high
inverse correlation (ρ = −0.944) between the evolution of N and variation of the temperature. The period
from June to November (see Figure 3) belongs to the second cycle of N. In this cycle, we found a high
correlation (ρ = 0.962) between the evolution of N and variation of water vapor.

Figure 4 shows the cumulative distributions of N for all months. For a percentage of time less than 1%, the
worst months (months with highest values of N) are December, October, September, and March. For all
remaining time percentages, the worst month is August.

Figure 5 shows the monthly variations of N and their corresponding trends for all 12 months for the
analyzed period.

As seen in Figure 5a, the monthly average values of the surface refractivity decrease from year to year over
the period from December 1978 to May 2013. The highest decrease of the N is observed for the month of
December and the lowest one for the month of May. In these months the outage probability Pwwill be lower
from year to year. Figure 5‐b shows that the monthly average values of the surface refractivity increase from
year to year over the period from June 1978 to October 2013. The highest increase of theN is observed for the
month of August and the lowest one for the month of October. For the month of November, a slow decrease
of N is observed.

The obtained values of the correlation coefficient (ρ) between themeanmonthly values ofN and water vapor
as well as temperature are shown in Table 1.

The values of the correlation coefficient shown in Table 1 indicate that the evolution of N depends on both
water vapor and temperature.

From Table 1 the following can be observed:

1. The months of December, January, February, and March have a high inverse correlation with
temperature.

2. The months of June, July, August, September, and October have a high correlation with water vapor
pressure.

3. The month of May is characterized by a medium correlation with humidity and a weak correlation with
temperature.

4. The month of November is characterized by a very weak inverse correlation with humidity and a weak
correlation with temperature.

Let us analyze the evolution of N in detail for the months of February and
August. From Table 1 it is clear that there is a significant inverse correla-
tion between the values of the refractivity and water vapor, as well as tem-
perature for February. However, the temperature had more contribution
because as one can see from Figure 2, February lies in the first cycle of
the evolution of N where the value of N is mainly determined by the
temperature. Table 1 shows a high correlation between NAug and water

Table 2
Monthly Mean Surface Refractivity (N Units)

N Min Max Mean ITU Linear best fit

NFeb 311.2 323.3 317.7 320 ‐0.1064X + 316.3603
NAug 313.7 328.7 320.9 320 0.1894X + 317.4819

Table 3
Trend of Monthly Mean Temperature and Water Vapor Pressure

Parameter

Linear best fit

February August

Temperature, K 0.1012x + 248.0063 0.0537x + 283.5524
Water vapor pressure, hPa 0.0056x + 0.7857 0.06x + 9.1263
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vapor and a relatively weak correlation with temperature. However, the
water vapor (humidity) had more contribution because as one can see
from Figure 3 August lies in the second cycle of the evolution of N where
the value of N is mainly determined by the humidity.

Observations of the mean monthly values of N for these months are
shown in Table 2. Column “ITU” shows the values taken from the ITU
maps. While the yearly mean over the 35‐year period remains in good
agreement with the ITU values, this disguises the fact that the mean
values for the worst months of February and August are diverging increas-
ingly year on year throughout this period.

In Table 2 and all subsequent tables the variable, x is the year number of
the analyzed period, that is, x = 1, 2, 3, … 35.

It has been noted that while the mean value over the 35‐year period is
close to the value given in the ITU maps, there is a distinct trend. NFeb

decreases year on year, while NAug increases. This is because the variation
of humidity is significantly more important in August compared to
February in comparison to temperature variations. Trends for tempera-
ture and humidity are shown in Table 3.

These results confirm that the change in humidity is the parameter that most influences the change of N
(Sizun & de Fornel, 2005). The values of the refractivity from the ITUmaps for February and August are con-
stant values. This is because ITU recommendations do not consider the evolution of climatic parameters
(humidity, temperature, and pressure) over time.
3.1.1. Seasonal Variation of the Mean Surface Refractivity
In this study, analysis of the seasonal variation is also provided. Including winter, spring, summer, and
autumn. Variation of the seasonal mean surface refractivity and their linear trends are given in Figure 6.

For each year, the obtained results show that the values ofN are mainly lower in spring and autumn seasons,
and higher in the winter and summer seasons. From Figure 6, it can be observed that for summer and
autumn seasons, the evolution of the mean surface refractivity increases from one year to another.
However, this increase is more significant in summer. This is due to the high humidity in summer from
one year to another during the analyzed period. For winter and spring seasons, the evolution of the mean
surface refractivity decreases from one year to another. However, this decrease is more significant in winter.
For the 35‐year period, the linear trends of the seasonal surface refractivity are shown in Table 4 for the four
seasons. To make the connection between the seasonal evolution of N and climate, the linear trend of the
evolution of the temperature and water vapor pressure is also shown in Table 4.

Over a period of 35 years, there is an increase in all seasons of the temperature and water vapor pressure.
However, the increase of the water vapor pressure is most important in summer following by autumn,
spring, and winter. The obtained values of the correlation coefficient between the seasonal values of N
and water vapor as well as temperature are shown in Table 5.

From Table 5, it was observed a high correlation betweenN and water vapor pressure (ρ= 0.92) for summer,
and a medium correlation between N and temperature (ρ = 0.71) for
autumn. There is also a correlation between N and temperature in these
seasons. However, the effect of this correlation is largely compensated
by the correlation between N and water vapor pressure. For this reason,
an increase of N is observed in these seasons. Table 5 shows that there
is high inverse correlation between N and temperature in the winter
(ρ = −0.89) and a weak inverse correlation (ρ = −0.33) in spring. There
is also an inverse correlation (ρ = −0.77) between N and water vapor
pressure in the winter season. However, the effect of this correlation is lar-
gely compensated by the inverse correlation between N and temperature.
For this reason, a decrease of N is observed in this season. There is no
correlation between N and water vapor pressure in the spring season.

Figure 6. Seasonal variations of the mean surface refractivity (1979‐2013).

Table 4
Linear Trends of Seasonal Surface Refractivity, Temperature, and Water
Vapor Pressure

Season

Linear best fit

Surface
refractivity, N units Temperature

Water vapor
pressure

Winter ‐0.0983x + 318.1304 0.1228x + 249,862 0.0103x + 0.9365
Spring ‐0.0643x + 313.1506 0.1074x + 263,1418 0.0121x + 2.849
Summer 0.1456x +315.1616 0.086x + 281,8232 0.0566x + 8.1668
Autumn 0.0139x + 311.9241 0.080x + 271,5958 0.0228x + 4.9412
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3.2. Analysis of the Refractivity Gradient

An important index used in the design procedure for microwave links is
the refractivity gradient, dN1. This index is calculated based on the values
of the refractivity at two different heights above the ground surface
(Zilinskas et al., 2012). Values of dN1 outside of the normal range
(dN1 = −40 N Units/km) are referred to as anomalous refraction. Values
in the range (−157 < dN1 < −41 N Units/km) cause superrefraction,
values (dN1 < −157 N Units/km) cause trapping or ducting, and dN1

−41 N Units/km cause subrefraction. Superrefraction and ducting can
cause propagation well beyond the normal radio horizon, which has the

potential to cause interference with nominally independent links. Subrefraction causes fading on the
intended link. Large negative values of dN1 are also associated with an increased probability of deep,
clear‐air multipath fading (AbouAlmal et al., 2013).

In this paper, there are only measured local meteorological data at the surface. However, to determine dN1,
we need the value of N at some height (at 65 m in this case). For this reason, we estimated the local
meteorological data according to the methodology described in section 2 of this paper. This approach is
not accurate. For example, some phenomena such as temperature inversion (an increase in temperature
with height) cannot be considered. However, in normal atmospheric conditions, the estimated values of

dN1 can give an idea of the evolution of dN1. Our analysis will be limited to yearly and monthly variations
of the mean refractivity gradient.
3.2.1. Yearly Variation of the Mean Refractivity Gradient
The mean yearly variations of the refractivity gradient over the period of the 35 years and the corresponding
linear trend are given in Figure 7.

Figure 7 shows that years 1982, 1990, 1992, 2001, and 2009 have the highest values of the dN1. Moreover, one
can see that the year 1982 is characterized by the highest value of dN1. The lowest value of dN1 lies in
2012 and 1998. From Figure 3, it can be noted that yearly mean values lie in the range −67.62 < dN1‐mean
< −62.97 N Units/km. Thus, superrefraction is the norm for this region.

The linear trend line clearly shows a marked year‐on‐year decrease in the annual mean dN1‐mean. This is
due to the increase in temperature and water vapor during this period.

Our analysis shows that there is a perfect inverse correlation between the mean yearly values of dN1 and
temperature (ρ = −0.72) and between the mean yearly values of dN1 and water vapor (ρ = −0.95). These
results show that the evolution of the mean yearly value of dN1 depends on the temperature and
water vapor.

3.3. Monthly Variation of Mean the Refractivity Gradient

Figure 8 shows the mean monthly variations of the refractivity gradient
dN1‐mean‐month over a period of 35 years.

From Figure 8, it can be observed that the shape of the dN1 curve is
inversely proportional to the temperature and water vapor curves.
Also, for all the years, it was observed that the highest values are found
in winter and the lowest in summer. The period from December to
March corresponds to the period in which the climatic conditions are
very difficult (very cold, precipitation in the form of snow, and wind
storm). During this period, dN1‐mean‐month varies between limits that
lead to the superrefraction phenomenon. The period from April to
June and September to November is a relatively pleasant period of the
year. In this period, the precipitations are in the form of rain. During
this period the superrefraction phenomenon takes place. It can also be
noted that the period from July to August is also a relatively pleasant
period of the year. In this period the precipitations are in the form of
rain. During this period, there is also a superrefraction phenomenon.

Table 5
Correlation Between Monthly Values of N and Water Vapor and Correlation
Between Monthly Values of N and Temperature

Season

Correlation coefficient (ρ)

Water vapor Temperature

Winter ‐0.77 ‐0.89
Spring ‐0.00 ‐0.33
Summer 0.92 0.62
Autumn 0.71 0.31

Figure 7. Mean yearly variations of the refractivity gradient at 0 and 65 m
(1979 to 2013).
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From Figure 8 August has a more negative value of dN1. So in this month the geoclimatic factor has the high-
est value, as shown in equation (12), and hence, Pw will be the highest value as shown in equation (13).

4. Conclusion

In this paper, an analysis of the refractivity over a period of 35 years in the Arctic regions has been presented.
The evolution of N over the analyzed period was characterized by two cycles. In the first cycle (from
December to May), the temperature variation was the parameter that mostly determines the evolution of
N. In the second cycle (from June toNovember) humiditymostly determines the evolution ofN. The pressure
undergoes a small variation in both cycles, so this parameter has practically no effect in the variation of N.

The mean value of N for the worst month (August in this case) was varied between 311.716 and 324.763
N Units.

The results of the analysis showed that the linear trends of the yearly variations ofN over the analyzed period
increase from year to year in the summer and autumn seasons. This is probably caused by CC. Thus, in the
future, it is necessary to consider the impact of CC in the design of communications links in the
Arctic regions.

Note that for each year from 1979 to 2013 the mean of the refractivity gradient dN1mean varies between
−67.62 and −62.97 N Units/km with standard deviation STD = 0.94. Since −150 < dN1‐mean < −41,
the superrefraction phenomenon is predicted. The value of dN1‐ITU determined for this station is dN1‐ITU

= −250 N Units/km. For all years in this period, dN1‐mean dN1‐ITU.

The superrefraction conditions for electromagnetic wave propagation predicted by the ITU maps have
been observed.

The values of dN1 were determined using the estimated values of local meteorological data at height 65 m. In
the future, we hope that measured local meteorological data will be available at a different height. If this will
be the case, we plan to use this data to determine dN1 more accurately and analyze the evolution of the
refractivity at different heights.
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