
Progress In Electromagnetics Research M, Vol. 92, 181–192, 2020

Estimation and Analysis of the Radio Refractivity, Its Gradient
and the Geoclimatic Factor in Arctic Regions

Yamina Bettouche1, Basile Agba1, Ammar Kouki1, Huthaifa Obeidat2, *,
Ali Alabdullah3, Fathi Abdussalam3, Sabir Ghauri4, and Raed Abd-Alhameed3

Abstract—In this paper, local meteorological data of one year have been used to calculate the surface
atmospheric radio refractivity (N) and estimate the vertical refractivity gradient (dN 1) as well as the
geoclimatic factor (K) in the lowest atmospheric layer above the ground surface in the station Kuujjuaq
(Quebec, Canada). In this region, the climate is arctic, characterized by very long and very cold winters
(on average the temperature is below −20◦C for almost 240 days per year). The precipitations are almost
nonexistent, and the vegetation is scarce. Average daily, monthly, seasonal, and yearly variations of
N, dN 1, and K are estimated and analysed. The obtained values of these indices are compared to the
corresponding values provided by the ITU. The results show that the more negative values of dN 1 lie
in the summer season. This is mainly due to the important variations of the temperature and humidity
during this season. However, the estimated values lie in the limits mostly corresponding to standard
refraction.

1. INTRODUCTION

Terrestrial fixed radio links operating at microwave frequencies on line-of-sight (LOS) are the widely
used means for transmitting audio and video data from transmitter to receiver [1, 2]. The performance
of the transmission depends not only on the precision of the user equipment but also on the state of the
transmission medium (troposphere in this case). Troposphere is the region of the atmosphere extending
from the surface of the earth up to a height of 8–10 km at polar altitudes, 10–12 km at moderate
latitudes, and up to 18–19 km at the equator [3, 4]. The state of troposphere is determined by the
climatic conditions: precipitation, temperature, pressure, water vapour pressure, etc. The variation of
climatic conditions has an important impact on the quality of the propagation of radio waves [5, 6]. In
the troposphere, the values of the main meteorological parameters (temperature, pressure, water vapour
pressure) vary from one season to another and across different heights. Variation of these meteorological
parameters leads to multipath propagation. The multipath propagation is an abnormal propagation
mechanism which causes the attenuation or enhancement of the transmitted signal.

The presence of high refractive layers in the troposphere leads to a few fading mechanisms like
beam spreading (defocusing), antenna decoupling, surface multipath, and atmospheric multipath. One
of the more severe of these mechanisms is multipath fading [7, 8].

In the design of communication systems, it is necessary to take account of path delays and the
percentage of time that a certain fade depth is not exceeded. The atmospheric refractivity N and
vertical gradient dN 1 [9] are generally used for this evaluation. The value of the geoclimatic factor is
an indicator of the fade depth. The ITU-R recommends estimating the geoclimatic factor based on
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the local fading data measured in the region of interest. If these data are not available, ITU provides
a procedure to find the value of the geoclimatic factor using the refractivity gradient in the region of
interest [7].

Therefore, the performance of communication links is determined by the quality of the propagation
of electromagnetic waves in the troposphere [10]. If the propagation quality is poor, two phenomena
occur: decrease of the transmitted power level and distortion of the transmitted signal [11, 12].

To take into account the state of the atmosphere during the design of terrestrial communication
links, the cumulative distribution of the refractivity gradient at a given height, h, is used as an assessment
index [13]. The refractivity gradient can be determined based on two values of the radio refractivity.
One of these values is determined at height, h, and the second at the surface (h = 0m). There are two
approaches to obtain the values of temperature, pressure, and water vapour pressure. One approach is
to measure these parameters at different heights (radiosonde data). The second approach is to estimate
the values of these parameters at a given height based on the measured values at some reference height.
In this case, the second approach is used since the station Kuujjuaq, in Quebec, Canada yields only
metrological data at the surface. Thereafter, these values are used to estimate the correspondent values
at a given height using ITU recommended relationships.

The main contribution of this paper is to give recommendations for the design of the communication
links based on the evaluation of the average daily, monthly, seasonal, and yearly distributions of radio
refractivity, refractivity gradient in the first 65 meters above the ground.

The rest of this paper consists of the following sections. The second section describes the used
methodology. The third section presents an analysis of the obtained results. The conclusion is given in
the last section.

2. METHODOLOGY

In this study, the station Kuujjuaq is considered. This station is located in the North-East of Quebec
at 58.1◦ latitude and −68.42◦ longitude, with an altitude of 39.9 m above sea level. The Canada
environment provides local climatic parameters (temperature, dew temperature, humidity, pressure,
etc.) stored in raw CSV format [14]. The data for the 2013 year are used in this paper. These files are
converted into Excel files for further processing. An example of this file is shown in Table 1.

Table 1. A sample of the collected data for 2013.

Date
Time
(hour)

Temperature,
t (◦C)

Dew
Temperature,

tr (◦C)

Relative
Humidity,

H (%)

Pressure,
P (kPa)

01-08-2013

00:00 11.5 9.1 85 100.74
01:00 11.2 9.2 87 100.72
. . . . . . . . . . . . . . .

23:00 8.5 6.9 90 100.66
. . . . . . . . . . . . . . . . . .

31-08-2013

00:00 3.2 0.3 81 100.12
01:00 2.9 −0.6 78 100.11
02:00 1.8 0 88 100.12
. . . . . . . . . . . . . . .

23:00 4.3 0.2 75 100.89

The flowchart of the used methodology to estimate the relevant parameters consists of several steps
as shown in Fig. 1. The first step is to acquire the corresponding meteorological data measured at the
surface. The second and third steps are to calculate, at the given height, the relevant parameters. The
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Figure 1. The flow chart of the used methodology.

fourth and fifth steps are to estimate the atmospheric radio refractivity (N) ant its gradient (dN 1),
respectively. The occurrence probability of ducting and multipath conditions is estimated in the sixth
step. Finally, the seventh step is to estimate the geoclimatic factor (K).

According to [10] dN 1 is determined by the following formulae:
dN1 = (N1 − Ns) / (h1 − hs) . (1)

where N1 is the atmospheric radio refractivity in N-units at height h1 (65 m), and Ns is the surface
atmospheric radio refractivity in N-units at height hs (hs = 0 km).

The variation of the atmospheric radio refractivity caused by the change of the meteorological
parameters plays an important role in the study of the radio waves propagation in the troposphere. It
is related to the refractive index, with n noted by the following relationship [12]:

N = (n − 1) 106 (2)
The index n is determined by the following formulae:

n =
√

εμ (3)
where ε is the relative permittivity, and μ is the relative permeability. In practice, N is often used
instead of n because the variation of n relative to its mean value (1.0003) is very low (variations appear
at the fifth and sixth decimals). The atmospheric radio refractivity at a given height, h, is estimated
according to the formulae given in [12]:

N (h) =
77.6
T (h)

(
P (h) + 4810

e (h)
T (h)

)
(4)

where T (h) is the absolute temperature (K); P (h) is the total atmospheric pressure (hPa); and e(h) is
the water vapour pressure (hPa). There are two main ways to determine atmospheric radio refractivity,
measuring by means of the refractometer or estimating from the meteorological data using Equation (4).
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As seen from Equation (4) the atmospheric radio refractivity has two components. The first
component is called dry component. This component varies with both pressure and temperature. The
second component is called wet component. The latter component depends on the values of humidity
and temperature. Depending on the season, these two components undergo various variations. In
this paper, we will consider the following seasons: winter (December, January, and February), spring
(March, April, and May), summer (June, July, and August), and autumn (October, September, and
November). In summer, the wet component increases, and dry component decreases. This is because
during this season the temperatures are high, and the humidity is low. However, in winter the tendencies
are reversed.

In our case, the radiosonde data for the temperature T (h), pressure P (h), and water vapour pressure
e(h) are not available at the Kuujjuaq station. Only the surface data of these meteorological data are
available. Therefore, to estimate the values of these parameters at given h, we use the formulas provided
in [15]. The temperature T (h) is given by:

T (h) = Ts − 6.5h (5)

where Ts is the absolute temperature in Kelvin at the surface. The following formulae are used to
determine the total atmospheric pressure P (h) at given h [15]:

P (h) = Ps [Ts/ (Ts − 6.5h)]−5.2558 (6)

where Ps is the pressure in hPa at the surface. The water vapour pressure in hPa is determined by [15]:

e (h) =
ρ (h) × T (h)

216.7
(7)

where ρ(h) is the water vapour density in g/m3. It is determined as [15]:

ρ (h) = ρse
−h

2 (8)

where ρs is the water vapour density at the surface. There are several methods to determine ρs. In this
paper the following formulae are used [16]:

ρs =
Hsθ

6

5.752
10(10−9.834θ) (9)

where θ = 300
Ts

, Hs and Ts are the relative humidity and the absolute temperature in Kelvin at the
surface, respectively. The relative humidity H (h) in % at a given h is [12]:

H (h) = 100
e (h)
es (h)

(10)

where es (h) is determined according to [17] by:

es (h) = 6.11 × 10
7.5t(h)

237.7+t(h) (11)

where t(h) is the temperature t(h) converted to degrees Celsius. In this paper, the geoclimatic factor,
K, is determined based on the value of dN 1 [7]:

K = 10−4.6−0.0027dN1 (12)

3. RESULTS AND ANALYSIS

In this section, we will use the available hourly measured data at Kuujjuaq station and the methodology
described in the previous section of this paper to estimate the relevant parameters and discuss the
obtained results.
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Figure 2. Average daily variations of N , H, and T at the surface on August 2013.

3.1. Analysis of the Surface Refractivity (N)

Figure 2 shows the average daily variations of N , H, and t in August 2013. It can be noted from the figure
that T ranges from 8.19◦C to 15.42◦C. Its mean and median values are 11.70 and 11.44, respectively. H
ranges from 60.52 to 89.45%. Its mean and median values are 75.48 and 77.66, respectively. N ranges
from 317.5 to 342 N-Units. Its mean and median values are 321.47 and 322.2, respectively.

The analysis shows that the values of N are: very high, high, and low during the morning, night,
and afternoon, respectively. Also, N has its highest value at 07 hours and the lowest value at 14 hours.
Thus, in the early hours of the day, the occurrence of communication failure is more likely than in the
rest of the hours. This is mainly because during the early hours of the day the humidity is high.

Figure 3 shows the mean yearly and seasonal probability density function (PDF) of the refractivity.
In order to identify the best-fit distribution for the seasonal PDF, the following procedure has been

used. Firstly, the MATLAB function “mle” is used to determine the parameters of several distributions
(Lognormal Distribution, Normal Distribution, Nakagami Distribution). Secondly, the Kullback-Leibler
divergence is calculated using the MATLAB function “ldiv”. The distribution with the smallest value
of the Kullback-Leibler divergence has been selected. In our case, it is the Lognormal Distribution for
monthly, seasonal, and yearly PDFs taken over the analyzed period. The obtained PDF shows that N
is a log-normally distributed random variable with a mean value of Nmean-year-2013 = 314.17 Units. The
value of Nmean-year is close to the ITU value (N year-ITU = 315.6). Therefore, there is a good agreement
of the obtained values and the ITU values.

Figure 4 shows the mean monthly variation of refractivity from December 2012 to November 2013.
The highest value of N lies in August while the lowest value is found to be in November.

Figure 5 shows the mean seasonal variation of refractivity. The highest values of N lie in summer
and winter. The values of N in spring and autumn are almost the same. Thus, in summer and winter,
the occurrence of communication failure is more likely than spring and autumn seasons. This is also
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Figure 3. Seasonal PDF of surface refractivity.

Figure 4. Mean monthly variation of refractivity. Figure 5. Mean seasonal variation of
refractivity.

because in summer and winter the humidity is higher than in spring and autumn seasons.
The PDFs of the refractivity for several months are shown in Fig. 6. The monthly PDFs of

the refractivity Nmonth obtained are also lognormally distributed random variables. For the Kuujjuaq
station, it is observed that the yearly, monthly, and seasonal values of the refractivity follow a log-normal
distribution, and also the high values of N tend to fall in summer, while the mean values of N in the
months of July (320.5 Units) and August (321.5 Units) are the highest values.

3.2. Analysis of the Refractivity Gradient

An important index used in the design procedure for microwave links is the refractivity gradient,
dN 1 [18, 19]. According to [19], there are four types of wave propagation:

a) Ducting: When dN1 < −157 N-Units/km;
b) Super-refraction: When −157 N-Units/km <= dN1 <= −79 N-Units/km;
c) Standard refraction: When −79 N-Units/km < dN1 <= 0 N-Units/km;
d) Sub-refraction: When dN1 > 0 N-Units/km;

Super-refraction and ducting can cause propagation well beyond the normal radio horizon, which
has the potential to cause interference with nominally independent links. Sub-refraction causes fading
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Figure 6. Monthly PDF of refractivity. Figure 7. Average daily variations of dN1.

on the intended link. Large negative values of dN1 are also associated with an increased probability of
deep, clear-air multipath fading [20].

3.2.1. Average Daily Variations of the Refractivity Gradient

The average daily variations of the resulting predicted refractivity gradient (dN 1) for various months
(from December 2012 to November 2013) are shown in Fig. 7. From the variations shown in Fig. 7, it
is clear that less and more negative values of the refractivity gradient lie in summer, autumn, spring,
then winter. In the year 2013, the worst month is the month of August because more negative values
of the average daily of dN 1 are found in this month. For each month, the average daily variations of
dN 1 lie in the range where the standard refraction is the norm.

3.2.2. Monthly Variation of the Mean Refractivity Gradient

Figure 8 shows the average monthly variation of dN 1 (evaluated using Equation (1)), e, and T in
2013. The monthly variations of dN 1 are significant. The values oscillate between approximately −79
N-Units/km and −59 N-Units/km. The values are lower (i.e., more negative) during summer months
than winter months. This can be attributed to the decreasing vapour content and pressure and the
increasing temperature with height. From Fig. 8 one can also note that monthly mean values lie in the
range −79 N-Units/km < dN1-mean < −59 N-Units/km. Thus, standard refraction is the norm for
this region. The cumulative distribution of the refractivity gradient determines the probability that a
given value of the refractivity gradient is lower than a considered value.

Figure 9 shows the average monthly cumulative distributions of the refractivity gradient from
December 2012 to November 2013.

It can be seen from Fig. 9 that all curves follow a similar trend. Almost for all percentages of time
the more negative values of dN 1 lie in August. It can also be observed that for almost all percentages of
time the less negative values of dN 1 lie in January. The more negative values of the refractivity gradient
can be explained by the presence of the high temperature and high water vapour pressure, whereas the
less negative values of the refractivity gradient can be explained by the presence of the low temperature
and low water vapour pressure during the corresponding period of the year.

Figure 10 shows the average monthly variations of dN 1 for different time percentages of time.
For 99% percent of time, minimum, maximum, and median values of dN 1 were: −65.68, −56.1, and
−57.52 N-units/Km, respectively. For 90% percent of time, minimum, maximum, and median values
of dN1 were: −71.1, −57.4, and −58.8 N-units/Km, respectively. For 50% percent of time, minimum,
maximum, and median values of dN 1 were: −78.53, −58.8, and −62.69 N-units/Km respectively. For
10% percentage of time, minimum, maximum, and median values of dN 1 were: −90.5, −60.7, and
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−69.56 N-units/Km, respectively. For 1% percentage of the time, minimum, maximum, and median
values of dN 1 were: −99.88, −62.11, and −76.64 N-units/Km, respectively. It was observed that in
July and August during 10% of the time super-refraction condition would be observed. For the rest of
the months and different percentages, the values of dN 1 lie between limits corresponding to standard
refraction conditions.

 

Figure 8. Mean monthly variations of dN1 in 2013.

Figure 9. Average monthly cumulative distributions of dN1 at 65 m.
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Figure 10. Average monthly variations of dN1

for different percentages of time at 65 m in 2013.
Figure 11. Average seasonal and yearly
cumulative distributions of the dN1 at 65 m in
2013.

3.2.3. Seasonal Variation of the Mean Refractivity Gradient

Average seasonal and yearly cumulative distributions of the refractivity gradient for December 2012 to
November 2013 are shown in Fig. 11. The parameters derived from the yearly distributions are given
in Table 2. The values of the refractivity gradient, which are not exceeded for a certain per cent of an
average year, are compared with the values obtained according to the ITU-R model.

Table 2. Obtained values compared with ITU maps.

Percentage
(%)

Obtained values
(N-Units/km)

ITU values
(N-Units/km)

1 −92.57 −250
10 −77.87 −112, 6
50 −63.14 −41.8
90 −58.40 −23.8
99 −57.11 −3

For yearly results, we observe that for different percentages, the values of dN1 are different from
the corresponding values provided by ITU. For 1% and 10%, the value of the dN1 obtained is higher
than the correspondent ITU value. For 50%, 90%, 99%, the value of the dN1 obtained is lower than the
correspondent ITU value.

From Fig. 11 we note that for seasonal curves, more and more negative values of dN 1 occur from
winter, spring, autumn to summer. From the yearly curve, we observe that the estimated yearly values of
dN 1 for different percentages of time are different from the corresponding values provided by ITU. This
difference is caused by the following factor. The ITU values have been determined using radiosonde
data collected from 1955 to 1959 years. In this manuscript, the values are estimated based on data
measured on surface in 2013 year. Due to climatic changes data used by ITU will be different from our
data. Moreover, radiosonde data are more precise than the estimated data.

3.3. Analysis of the Geoclimatic Factor

Figure 12 shows the average daily variations of temperature (T ), humidity (H) and the geoclimatic
factor (K) observed at ground level in August 2013.
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Figure 12. Average daily variations of T , H, and K at the surface on August 2013.

As seen in Fig. 12, T ranges from 7.5◦C to 14.73◦C. Its mean and median values are 11.02 and
10.76, respectively. H ranges from 59.63 to 88.31%. Its mean and median values are 74.46 and 76.60,
respectively. K ranges from 0.106 to 0.1080 K-Units. It has the same value for the mean, and the
median equals 0.1069. It is observed that for T there is a progressive increase of the values from 04
hours to 14 hours, and progressive decrease of these values during the remaining time of the day. For
H, there is a progressive increase of the values from 00 hours to 04 hours and from 14 hours to 23 hours.
From 04 hours to 14 hours there is a progressive decrease of these values. For K, it is observed that
from 00 hours to 04 hours and from 19 hours to 21 hours, the values are almost constant. Also, there
is a progressive increase of the values from 04 hours to 07 hours and from 15 hours to 19 hours. From
07 hours to 15 hours and from 21 hours to 23 hours there is a progressive decrease of the values.

Figure 13 shows the average daily variations of N , dN 1, and K. As seen from Fig. 13, N ranges
from 312.5 to 319.2 N-units. Its mean and median values are 316.4 and 317.0, respectively. dN 1 ranges
from −80.23 to −77.29 N-units/km. Its mean and median values are −78.68 and −78.79, respectively.
K ranges from 1.0592e-04 to 1.0797e-04 K-Units. It has the same value for the mean, and the median
equals 1.0687e-04. It is observed that from 04 hours to 07 hours and from 15 hours to 18 hours, there is
a progressive increase of the values of K and progressive decrease of the values of dN 1. This is due to
the high values of H. At 07 hours and 19 hours, there are more high values of the K and more negative
values of dN 1. This is because in the same period of time there are high values of H. At 15 hours,
there are more low values of K and high values of dN 1. This is because in the same period of time
there are low values of H. Also from the figure, it can be observed that from 07 hours to 15 hours and
from 20 hours to 23 hours, there is a progressive decrease of the values of K, and progressive increase
of the values of dN 1. This is due to the progressive increase of the values of H. For K, it is observed
that from 00 hours to 04 hours and From 18 hours to 20 hours, the values are almost constant.
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Figure 13. Average daily variations of N, dN1, and K at h = 65 m on August 2013.

4. CONCLUSION

Previously, the assessments of the radio refractivity and refractive gradient have not been carried out
in this region of Quebec. The results obtained in this paper show that the low values of the refractivity
gradient lie from 06 hours to 09 hours and from 18 hours to 21 hours, and the maximum values lie from
12 hours to 16 hours. In these periods of day, there are high and low values of the humidity, respectively.
The extreme values of the refractivity gradient appear mostly in summer. This is mainly because in
summer the humidity and temperatures are much higher. The analysis of the estimated values shows
that the standard refraction is the norm for the observed region. However, there is a low probability
for the occurrence of super-refraction in July and August. In the future work, we plan to use the data
for several years in order to see if there is some influence of the climatic changes on the values of the
estimated parameters.
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