Far East Journal of Mathematical Sciences (FJMS)
© 2017 Pushpa Publishing House, Allahabad, India http://www.pphmj.com
http://dx.doi.org/10.17654/MS101081671
Volume 101, Number 8, 2017, Pages 1671-1690

A NEAR CYCLIC $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$-CYCLE SYSTEM OF COMPLETE MULTIGRAPH

Mowafaq Alqadri and Haslinda Ibrahim

School of Quantitative Sciences
College of Arts and Sciences
Universiti Utara Malaysia
06010 Sintok, Kedah, Malaysia
e-mail: moufaqq@yahoo.com
linda@uum.edu.my

Abstract

Let v, λ be positive integers, λK_{v} denote a complete multigraph on v vertices in which each pair of distinct vertices joining with λ edges. In this article, difference method is used to introduce a new design that decomposes $4 K_{v}$ into cycles, when $v \equiv 2,10(\bmod 12)$. This design merging between cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system and near-fourfactor is called a near cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system.

1. Introduction

In this paper, it is considered that all graphs are undirected with no loops and vertices set Z_{v}. We denote the complete graph on v vertices by K_{v}. An m-cycle (respectively, m-path), denoted by (c_{0}, \ldots, c_{m-1}) (respectively, [$\left.c_{0}, \ldots, c_{m-1}\right]$), consists of m distinct vertices $\left\{c_{0}, c_{1}, \ldots, c_{m-1}\right\}$ and m edges
$\left\{c_{i} c_{i+1}\right\}, \quad 0 \leq i \leq m-2$ and $c_{0} c_{m-1}$ (respectively, $m-1$ edges $\left\{c_{i} c_{i+1}\right\}$, $0 \leq i \leq m-2$).

An $\left(m_{1}, \ldots, m_{r}\right)$-cycle is the union of all edges in each m_{i}-cycle, $1 \leq i \leq r$. A decomposition of a graph G is a set of subgraphs $\left\{H_{1}, \ldots, H_{r}\right\}$ of G whose edges set partitions the edge set of G. If K_{v} has a decomposition into r cycles of length $m_{1}, m_{2}, \ldots, m_{r}$, then it is said an (m_{1}, \ldots, m_{r})-cycle system of order v that is defined as a pair (V, C) such that $V=V\left(K_{v}\right)$, and C is a collection of edge-disjoint m_{i}-cycles, for $1 \leq i \leq r$, which partitions the $E\left(K_{v}\right)$. In particular, if $m_{1}=\cdots=m_{r}=m$, then it is called an m-cycle system of order v or $\left(K_{v}, C_{m}\right)$-design.

A complete multigraph of order v, denoted by λK_{v}, can be obtained by replacing each edge of K_{v} with λ edges. A $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of λK_{v} is a pair (V, C), where $V=V\left(\lambda K_{v}\right)$ and C is a collection of edgedisjoint m_{i}-cycles for $1 \leq i \leq r$ which partitions the edge multiset of λK_{v}. An automorphism of $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of λK_{v} is a bijection $\alpha: V\left(Z_{v}\right) \rightarrow V\left(Z_{v}\right)$ such that for any $\left(c_{0}, \ldots, c_{t-1}\right) \in C$ if and only if $\left(\alpha\left(c_{0}\right), \ldots, \alpha\left(c_{t-1}\right)\right) \in C,\left(m_{1}, \ldots, m_{r}\right)$-cycle system of λK_{v} is called cyclic if it has automorphism that is a permutation consisting of a single cycle of order v, for instance, $\alpha=(0,1, \ldots, v-1)$ and is said to be simple if all its cycles are distinct.

Given an m-cycle $C_{m}=\left(c_{0}, c_{1}, \ldots, c_{m-1}\right)$, by $C_{m}+i$ we mean $\left(c_{0}+i, c_{1}+i, \ldots, c_{m-1}+i\right)$, where $i \in Z_{v}$. Analogously, if $C=\left\{C_{m_{1}}\right.$, $\left.C_{m_{2}}, \ldots, C_{m_{r}}\right\}$ is an $\left(m_{1}, \ldots, m_{r}\right)$-cycle, then we use $C+i$ instead of $\left\{C_{m_{1}}+i, C_{m_{2}}+i, \ldots, C_{m_{r}}+i\right\}$. A set of cycles that generates the cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of λK_{v} by repeated addition of 1 modular v which is called a starter set (briefly δ).

The study of $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of λK_{v} has been considered the
most important problems in graph decomposition. The important is case $\lambda=1, m_{1}=\cdots=m_{r}=m$. The existence question for a $\left(K_{v}, C_{m}\right)$-design has been solved by Alspach and Gavlas [2] in the case of m odd and by Šajna [11] for m even. While the existence question for a cyclic m-cycle has been settled when $m=3$ [8], 5 and 7 [10]. For m even and $v \equiv 1(\bmod 2 m)$, a cyclic m-cycle system of order v was proved for $m \equiv 0,2(\bmod 4)$ in $[6,9]$. Recently, Bryant et al. [3] showed the necessary and sufficient conditions for decomposing K_{v} into r cycles of lengths $m_{1}, m_{2}, \ldots, m_{r}$ or into r cycles of lengths $m_{1}, m_{2}, \ldots, m_{r}$ and perfect matching. Thus, the Alspach's problem has been settled which was posed in 1981 [1]. More recently, it has been extended to this decomposition for the complete multigraph λK_{v} in [4].

A k-factor of a graph G is a spanning subgraph whose vertices have a degree k. While a near- k-factor is a subgraph in which all vertices have a degree k with exception of one vertex (isolated vertex) which has a degree zero.

Moreover, in [7], Matarneh and Ibrahim introduced the decomposition of a complete multigraph $2 K_{v}$, when $v \equiv 0(\bmod 12)$, by combination of cyclic $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$-cycle system and near-two-factor. In our paper, we propose a new design for decomposing a complete multigraph $4 K_{v}$ when $v \equiv$ $2,10(\bmod 12)$. This is obtained by merging a cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system and near-four-factors that is called a near cyclic (m_{1}, \ldots, m_{r})-cycle system denoted by $\operatorname{NCCS}\left(4 K_{v}, \delta\right)$. Thus, we present $\operatorname{NCCS}\left(4 K_{v}, \delta\right)$ as a $(v \times|\delta|)$ array satisfying the following conditions:

- the cycles in row r and column i form a near-four-factor with focus r,
- the cycles associated with rows contain no repetitions.

The main result of this paper is the following:
Theorem 1.1. There exists a full simple cyclic (m_{1}, \ldots, m_{r})-cycle system of $4 K_{v}, \operatorname{NCCS}\left(4 K_{v}, \delta\right)$, when $v \equiv 2,10(\bmod 12)$.

2. Preliminaries

Throughout this paper, we use difference set method that will be clarified in this section to obtain the main results.

Let $G=K_{v}$, for $a, b \in V\left(K_{v}\right)$ and $a \neq b$, the difference d of pair $\{a, b\}$ is $|a-b|$ or $v-|a-b|$, whichever is smaller. We define the difference d of any edge $a b \in E\left(K_{v}\right)$ as $\min \{|a-b|, v-|a-b|\}$. So, the difference of any edge in $E\left(K_{v}\right)$ is not exceeding $\frac{v}{2}$, $(1 \leq d \leq\lfloor v / 2\rfloor)$. Let $C_{n}=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)\left(\right.$ respectively, $\left.P_{n}=\left[a_{0}, a_{1}, \ldots, a_{n-1}\right]\right)$ be an n-cycle (respectively, n-path) of K_{v}, the list of differences from C_{n} is a multiset $D\left(C_{n}\right)=\left\{\min \left\{\left|a_{i}-a_{i-1}\right|, v-\left|a_{i}-a_{i-1}\right|\right\} \mid i=1,2, \ldots, n\right\}$, where $a_{0}=a_{n}$ (respectively, $D\left(P_{n}\right)=\left\{\min \left\{\left|a_{i}-a_{i-1}\right|, v-\left|a_{i}-a_{i-1}\right| i=1,2, \ldots, n-1\right\}\right\}$). The list difference from $\delta=\left\{C_{m_{1}}, \ldots, C_{m_{t}}\right\}$ is the multiset $D(C)=$ $\bigcup_{i=1}^{t} D\left(C_{m_{i}}\right)$.

Definition 2.1. Given a complete multigraph λK_{v}, when v even. A set $\delta=\left\{C_{m_{1}}, \ldots, C_{m_{t}}\right\}$ of cycles of λK_{v} is $\left(\lambda K_{v}, \delta\right)$-difference system if $D(\delta)=\bigcup_{i=1}^{t} D\left(C_{i}\right)$ covers each element of $Z_{\frac{v}{2}}^{*}=Z_{\frac{v}{2}}-\{0\}$ exactly λ times and the middle difference $\left(\frac{\nu}{2}\right)$ appears $\left\{\frac{\lambda}{2}\right\}$ times.

As a particular result of the theory developed in [5], we have:
Proposition 2.1. A set $\delta=\left\{C_{1}, \ldots, C_{t}\right\}$ of m_{i}-cycles, where $i=1,2, \ldots, t$ is a starter set of a cyclic $\left(m_{1}, \ldots, m_{t}\right)$-cycle system of $4 K_{v}$, if and only if δ is a $\left(4 K_{v}, \delta\right)$-difference system.

The orbit of cycle C_{n}, denoted by $\operatorname{orb}\left(C_{n}\right)$, is the set of all distinct n-cycles in the collection $\left\{C_{n}+i \mid i \in Z_{v}\right\}$. The length of $\operatorname{orb}\left(C_{n}\right)$ is its cardinality, i.e., $\operatorname{orb}\left(C_{n}\right)=k$, where k is the minimum positive integer such
that $C_{n}+k=C_{n}$. A cycle orbit of length v on λK_{v} is said to be full and otherwise short.

3. A Near Cyclic $\left(m_{1}, m_{2}, \ldots, m_{r}\right)$-cycle System

In this section, we present new definitions and results of a near cyclic ($m_{1}, m_{2}, \ldots, m_{r}$)-cycle system, that are useful for our proof.

Definition 3.1. A near cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $4 K_{v}$, $\operatorname{NCCS}\left(4 K_{v}, \delta\right)$, combining a near-four-factor and cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system that is generated by the starter set δ. In addition, $\operatorname{NCCS}\left(4 K_{v}, \delta\right)$ is a $(v \times|\delta|)$ array that satisfies the following conditions:

- the cycles in row r and column i form a near-four-factor with focus r,
- the cycles associated with rows contain no repetitions.

Undoubtedly, for presenting the $\operatorname{NCCS}\left(4 K_{v}, \delta\right)$, it is sufficient to provide a starter set δ that satisfied a near-four-factor.

We present here some of new definitions which will be needed in the sequel.

Definition 3.2. Two m-cycles H and F of a graph G of order v are said to be parallel if they have the same difference set.

Definition 3.3. Let H and F be two m-cycles of a graph G of order v. If the sum of each two corresponding vertices of them is v, then it is called adjoined m-cycles, i.e., for $H=\left(h_{1}, h_{2}, \ldots, h_{m}\right)$ and $F=\left(f_{1}, f_{2}, \ldots, f_{m}\right)$ if $h_{i}+f_{i}=v, i=1, \ldots, m$, then H and F are adjoined cycles.

Corollary 3.1. Any two adjoined cycles are parallel cycles.
Throughout the paper, we shall sometimes use superscripts to identify the number of the cycles in a set. So, let us consider $\delta=$ $\left\{C_{m_{1}}^{n_{1}}, C_{m_{2}}^{n_{2}}, \ldots, C_{m_{r}}^{n_{r}}\right\}$ to be the set comprised of n_{i} cycles of length m_{i}, for $i=1,2, \ldots, r$. In addition, we consider that $C_{m_{i}}$ is the i th m-cycle in starter
set δ. Therefore, it is convenient to provide an example here to clarify the above discussion.

Example 3.1. Let $G=4 K_{22}$ and $\delta=\left\{C_{4}^{5}, C_{11}^{2}\right\}$ be a set of cycles of G such that

$$
\begin{aligned}
& C_{4_{1}}=(1,21,12,10), C_{4_{2}}=(2,20,13,9), C_{4_{3}}=(3,19,14,8), \\
& C_{4_{4}}=(4,18,7,15), C_{4_{5}}=(5,17,16,6), \\
& C_{11_{1}}=(2,11,3,10,4,9,6,8,7,17,21), \\
& C_{11_{2}}=(20,11,19,12,18,13,16,14,15,5,1) .
\end{aligned}
$$

Firstly, we note that each nonzero element in Z_{22} occurs twice in the cycles of δ. So every vertex has a degree 4 except zero element (isolated vertex) has degree zero. So, it satisfies the near-four-factor. Secondly, the difference sets for the cycles in δ are listed in Table 3.1 and Table 3.2 for 4-cycles and 11-cycles, respectively.

Table 3.1

4-cycle	$(1,21,12,10)$	$(2,20,13,9)$	$(3,19,14,8)$	$(4,18,7,15)$	$(5,17,16,6)$
Difference set	$\{2,9,2,9\}$	$\{4,7,4,7\}$	$\{6,5,6,5\}$	$\{8,11,8,11\}$	$\{10,1,10,1\}$

Table 3.2

11 -cycle	$(2,11,3,10,4,9,6,8,7,17,21)$	$(20,11,19,12,18,13,16,14,15,5,1)$
Difference set	$\{9,8,7,6,5,3,2,1,10,4,3\}$	$\{9,8,7,6,5,3,2,1,10,4,3\}$

As clearly shown, we observe that $D(\delta)=D\left(\bigcup_{i=1}^{5} C_{4_{i}}\right) \cup D\left(\bigcup_{i=1}^{2} C_{11_{i}}\right)$ covers each element of Z_{11}^{*} four times while the middle difference $\frac{22}{2}=11$ appears exactly twice. Therefore, the set $\delta=\left\{C_{4}^{5}, C_{11}^{2}\right\}$ is a $\left(4 K_{22}, \delta\right)$ difference system. Then an $\operatorname{NCCS}\left(4 K_{22}, \delta\right)$ is (22×7) array and the starter set $\delta=\left\{C_{4}^{5}, C_{11}^{2}\right\}$ generates all the cycles in (22×7) array by repeated addition of $1(\bmod 22)$ as shown in Table 3.3.

Table 3.3

Focus	$N C C S\left(4 K_{v}, \delta\right)$													
0	$\begin{array}{lllll}1 & 21 & 1210\end{array}$	220139	31914	8	\ldots	2011	19	1218		16		415	5	1
1	$\begin{array}{lllll}2 & 0 & 13 & 11\end{array}$	$\begin{array}{llllll}3 & 21 & 14 & 10\end{array}$	42015	9	\ldots	2112	20	1319			15	516	6	
!	\vdots	:	\vdots		\cdots				\vdots					
20	2119108	0 $181811 \begin{aligned} & 18\end{aligned}$	$1 \quad 1712$	6	\ldots	189	17	1016	11	14	412	213	3	2
21	020119	119128	21813	7	\ldots	1910		1117	12	15	13	314	4	0

As usual, any m-cycle has been written as a permutation

$$
\left(a_{1,1}, \ldots, a_{1, n}, a_{2,1}, \ldots, a_{2, r}, a_{3,1}, \ldots, a_{3, l}\right)
$$

where $n+r+l=m$. For the sake of simplicity, it can be represented as connected paths, we mean that $C_{m}=\left(P_{1, n}, P_{2, r}, P_{3, l}\right)$ such that $P_{1, n}=$ $\left[a_{1,1}, \ldots, a_{1, n}\right], P_{2, r}=\left[a_{2,1}, \ldots, a_{2, r}\right], P_{3, l}=\left[a_{3,1}, \ldots, a_{3, l}\right]$.

We will define the difference between any two paths H and K, denoted by $D(H, K)$, as the difference between the last vertex in the path H and the first vertex in the path K. Thus, for the cycle $C_{m}=\left(P_{1, n}, P_{2, r}, P_{3, l}\right)$, we find that $D\left(P_{1, n}, P_{2, r}\right)=D\left(\left[a_{1, n}, a_{2,1}\right]\right), D\left(P_{2, r}, P_{3, l}\right)=D\left(\left[a_{2, r}, a_{3,1}\right]\right)$ and $D\left(P_{3, l}, P_{1, n}\right)=D\left(\left[a_{3, l}, a_{1,1}\right]\right)$. Subsequently,

$$
\begin{aligned}
& D\left(C_{m}\right)= D\left(P_{1, n}\right) \cup D\left(P_{2, r}\right) \cup D\left(P_{3, l}\right) \cup D\left(P_{1, n}, P_{2, r}\right) \\
& \cup D\left(P_{2, r}, P_{3, l}\right) \cup D\left(P_{3, l}, P_{1, n}\right)
\end{aligned}
$$

and $V\left(C_{m}\right)=V\left(P_{1, n}\right) \cup V\left(P_{2, r}\right) \cup V\left(P_{3, l}\right)$.
Now we are ready to present the proof for Theorem 1.1, the main aim of our paper. We distinguish two cases according to the congruence class of $v \equiv(\bmod 12)$.

Case 1. There exists a full near cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $4 K_{12 n+10}, \operatorname{NCCS}\left(4 K_{12 n+10}, \delta\right)$.

Proof. We have two subcases:
Subcase 1. n is odd.
Suppose $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is the starter set of $4 K_{12 n+10}$ such that the list of 4-cycles is:

$$
\begin{aligned}
C_{4_{i}} & =\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right) \\
& =\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}(i, 12 n+10-i, 6 n+5+i, 6 n+5-i),
\end{aligned}
$$

when $i=\frac{5 n+3}{2}$, let

$$
C_{4_{i}}=\left(\frac{5 n+3}{2}, 12 n+10-\frac{5 n+3}{2}, 6 n+5-\frac{5 n+3}{2}, 6 n+5+\frac{5 n+3}{2}\right)
$$

While we consider $C_{6 n+5}^{*}$ and $C_{6 n+5}^{* *}$ that are adjoined $(6 n+5)$-cycle such that $C_{6 n+5}^{*}=\left(P_{1}^{*}, P_{2}^{*}, P_{3}^{*}\right), C_{6 n+5}^{* *}=\left(P_{1}^{* *}, P_{2}^{* *}, P_{3}^{* *}\right)$, where $\left\{P_{i}^{*}, P_{i}^{* *}\right.$ $\mid 1 \leq i \leq 3\}$ are paths as follows:

$$
\begin{aligned}
& P_{1}^{*}=[2,6 n+5,3,6 n+4, \ldots, 2 n+2,4 n+5], P_{2}^{*}=[3 n+3,3 n+5,3 n+4], \\
& P_{3}^{*}=[9 n+8,9 n+4,9 n+9,9 n+3, \ldots, 8 n+6,10 n+7,12 n+9], \\
& P_{1}^{* *}=[12 n+8,6 n+5,12 n+7,6 n+6, \ldots, 10 n+8,8 n+5], \\
& P_{2}^{* *}=[9 n+7,9 n+5,9 n+6], \\
& P_{3}^{* *}=[3 n+2,3 n+6,3 n+1,3 n+7, \ldots, 4 n+4,2 n+3,1] .
\end{aligned}
$$

We will divide the proof into two parts as follows:
Part 1. In this part, we prove that δ is a near-four-factor. To do this, we need to calculate the vertices

$$
V\left(\bigcup_{i=1}^{3 n+2} C_{4_{i}}\right)=c_{1, i} \cup c_{2, i} \cup c_{3, i} \cup c_{4, i}, 1 \leq i \leq 3 n+2
$$

such that $c_{1, i}=i, c_{2, i}=12 n+10-i, c_{3, i}=6 n+5+i, c_{4, i}=6 n+5-i$, $1 \leq i \leq 3 n+2, i \neq \frac{5 n+3}{2}$. Then

$$
\begin{aligned}
& c_{1, i}=\{1,2,3, \ldots, 3 n+2\}-\left\{\frac{5 n+3}{2}\right\}, \\
& c_{2, i}=\{12 n+9,12 n+8, \ldots, 9 n+8\}-\left\{\frac{19 n+17}{2}\right\}, \\
& c_{3, i}=\{6 n+6,6 n+7, \ldots, 9 n+7\}-\left\{\frac{17 n+13}{2}\right\}, \\
& c_{4, i}=\{6 n+4,6 n+3, \ldots, 3 n+3\}-\left\{\frac{7 n+7}{2}\right\} .
\end{aligned}
$$

While, if $i=\frac{5 n+3}{2}$, then

$$
V\left(C_{4_{i}}\right)=\left\{\frac{5 n+3}{2}, \frac{19 n+17}{2}, \frac{7 n+7}{2}, \frac{17 n+13}{2}\right\}
$$

Observe that the vertices of all 4 -cycles cover every nonzero elements of $\left\{Z_{12 n+10}-\{6 n+5\}\right\}$ exactly once, whereas we provide the vertices of $(6 n+5)$-cycles as $V\left(P_{i}^{*}\right) \cup V\left(P_{i}^{* *}\right), i=1,2,3$ as follows:

$$
\begin{aligned}
V\left(P_{1}^{*}\right) & =\{2,3,4, \ldots, 2 n+2\} \cup\{6 n+5,6 n+4, \ldots, 4 n+5\}, \\
V\left(P_{2}^{*}\right) & =\{3 n+3,3 n+5,3 n+4\}, \\
V\left(P_{3}^{*}\right) & =\{9 n+8,9 n+9, \ldots, 10 n+7\} \\
& \cup\{9 n+4,9 n+3, \ldots, 8 n+6\} \cup\{12 n+9\}, \\
V\left(P_{1}^{* *}\right) & =\{12 n+8,12 n+7, \ldots, 10 n+8\} \cup\{6 n+5,6 n+6, \ldots, 8 n+5\},
\end{aligned}
$$

$$
\begin{aligned}
& V\left(P_{2}^{* *}\right)=\{9 n+7,9 n+5,9 n+6\}, \\
& V\left(P_{3}^{* *}\right)=\{3 n+2,3 n+1, \ldots, 2 n+3\} \cup\{3 n+6,3 n+7, \ldots, 4 n+4\} \cup\{1\} .
\end{aligned}
$$

Then the vertices of $(6 n+5)$-cycles cover each nonzero element of $Z_{12 n+10}$ exactly once except $\{6 n+5\}$ twice. Then the vertex set of the cycles in $\delta, V(\delta)$, covers each element of $Z_{12 n+10}^{*}$ twice. Consequently, it satisfies near-four-factor (with isolated zero element).

Part 2. In this part, we prove that $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is the $\left(4 K_{12 n+10}, \delta\right)$-difference system. So, we will check the difference as follows:

$$
\bigcup_{i=1}^{3 n+2} D\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right)=\bigcup_{i=1}^{3 n+2} D\left(c_{j, i}, c_{j+1, i}\right), 1 \leq j \leq 4,
$$

where $c_{5, i}=c_{1, i}$,

$$
\begin{aligned}
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2} D\left(c_{1, i}, c_{2, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}(2 i)=\{2,4, \ldots, 6 n+4\}-\{5 n+3\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}} 3 n+2} D\left(c_{2, i}, c_{3, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}(6 n+5-2 i) \\
= & \{6 n+3,6 n+1, \ldots, 3,1\}-\{n+2\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2} D\left(c_{3, i}, c_{4, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}(2 i)=\{2,4, \ldots, 6 n+4\}-\{5 n+3\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2} D\left(c_{4, i}, c_{1, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+3}{2}}}^{3 n+2}(6 n+5-2 i) \\
= & \{6 n+3,6 n+1, \ldots, 3,1\}-\{n+2\} .
\end{aligned}
$$

When $i=\frac{5 n+3}{2}$, then $D\left(C_{4_{i}}\right)=\{5 n+3,6 n+5,5 n+3,6 n+5\}$.
Then the list of difference set of 4 -cycles covers every element of $\left\{Z_{6 n+5}^{*}-(n+2)\right\} \cup\{6 n+5\}$ exactly twice. Similarly, we compute $D\left(C_{6 n+5}^{*}\right) \cup D\left(C_{6 n+5}^{* *}\right)$ as follows:
$D\left(C_{6 n+5}^{*}\right)=D\left(P_{1}^{*}\right) \cup D\left(P_{2}^{*}\right) \cup D\left(P_{3}^{*}\right) \cup D\left(P_{1}^{*}, P_{2}^{*}\right) \cup D\left(P_{2}^{*}, P_{3}^{*}\right) \cup D\left(P_{3}^{*}, P_{1}^{*}\right)$,
$D\left(P_{1}^{*}\right)=\{6 n+3,6 n+2, \ldots, 2 n+4,2 n+3\}, D\left(P_{2}^{*}\right)=\{2,1\}$,
$D\left(P_{3}^{*}\right)=\{4,5, \ldots, 2 n+1,2 n+2\}$,
$D\left(P_{1}^{*}, P_{2}^{*}\right)=D(4 n+5,3 n+3)=\{n+2\}$,
$D\left(P_{2}^{*}, P_{3}^{*}\right)=D(3 n+4,9 n+8)=\{6 n+4\}$,
$D\left(P_{3}^{*}, P_{1}^{*}\right)=D(12 n+9,2)=\{3\}$.
Relying on adjoined cycles $C_{6 n+5}^{* *}$ and $C_{6 n+5}^{*}$, we find the same difference set by Corollary 3.1. Then $D\left(C_{6 n+5}^{*}\right) \cup D\left(C_{6 n+5}^{* *}\right)$ covers each element of $Z_{6 n+5}^{*}$ exactly twice except $\{n+2\}$ four times. From the above discussion, we deduce that $D(\delta)$ covers each element in $Z_{6 n+5}^{*}$ four times and the middle difference $\{6 n+5\}$ twice.

This assures that $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is $\left(4 K_{12 n+10}, \delta\right)$-difference system, n is odd. Therefore, $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+1}^{2}\right\}$ is starter set for the $\operatorname{NCCS}\left(4 K_{12 v+10}, \delta\right)$ when n is odd.

Subcase 2. n is even.
Suppose $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is the starter set of $4 K_{12 n+10}$ such that the list of 4-cycles is:

$$
\begin{aligned}
C_{4_{i}} & =\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right) \\
& =\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}(i, 12 n+10-i, 6 n+5+i, 6 n+5-i) .
\end{aligned}
$$

When $\quad i=\frac{n}{2}, \quad$ then $\quad C_{4_{i}}=\left(\frac{n}{2}, 6 n+5-\frac{n}{2}, 12 n+10-\frac{n}{2}, 6 n+5+\frac{n}{2}\right)$ whereas $C_{6 n+5}^{*}$ and $C_{6 n+5}^{* *}$ are adjoined $(6 n+5)$-cycles such that $C_{6 n+5}^{*}=\left(P_{1}^{*}, P_{2}^{*}, P_{3}^{*}\right), \quad C_{6 n+5}^{* *}=\left(P_{1}^{* *}, P_{2}^{* *}, P_{3}^{* *}\right)$, where $\left\{P_{i}^{*}, P_{i}^{* *} \mid 1 \leq\right.$ $i \leq 3\}$ are paths as follows:

$$
\begin{aligned}
& P_{1}^{*}=[2,6 n+5,3,6 n+4, \ldots, 2 n+2,4 n+5], \\
& P_{2}^{*}=[3 n+5,3 n+3,3 n+4], \\
& P_{3}^{*}=[9 n+8,9 n+4,9 n+9,9 n+3, \ldots, 8 n+6,10 n+7,12 n+9], \\
& P_{1}^{* *}=[12 n+8,6 n+5,12 n+7,6 n+6, \ldots, 10 n+8,8 n+5], \\
& P_{2}^{* *}=[9 n+5,9 n+7,9 n+6], \\
& P_{3}^{* *}=[3 n+2,3 n+6,3 n+1,3 n+7, \ldots, 4 n+4,2 n+3,1] .
\end{aligned}
$$

In similar way for the Subcase 1 , one may easily verify that $V(\delta)=\left(V\left(\bigcup_{i=1}^{3 n+2} C_{4_{i}}\right) \cup V\left(C_{6 n+5}^{*}\right) \cup V\left(C_{6 n+5}^{* *}\right)\right)$ covers each element in $Z_{12 n+10}^{*}$ exactly twice. Now, we are going to calculate the difference set of 4-cycles as follows:

$$
\bigcup_{\substack{i=1 \\ i \neq \frac{n}{2}}}^{3 n+2} D\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right)=\bigcup_{\substack{i=1 \\ i \neq \frac{n}{2}}}^{3 n+2} D\left(c_{j, i}, c_{j+1, i}\right), 1 \leq j \leq 4,
$$

where $c_{5, i}=c_{1, i}$,

$$
\begin{aligned}
& \bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2} D\left(c_{1, i}, c_{2, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}(2 i)=\{2,4, \ldots, 6 n+4\}-\{n\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2} D\left(c_{2, i}, c_{3, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}(6 n+5-2 i) \\
= & \{6 n+3,6 n+1, \ldots, 3,1\}-\{5 n+5\}, \\
& \bigcup_{i=1}^{3 n+2} D\left(c_{3, i}, c_{4, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}(2 i)=\{2,4, \ldots, 6 n+4\}-\{n\}, \\
& \bigcup_{i=1}^{3 n+2} D\left(c_{4, i}, c_{1, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{n}{2}}}^{3 n+2}(2 i 6 n+5-2 i) \\
= & \{6 n+3,6 n+1, \ldots, 3,1\}-\{5 n+5\} .
\end{aligned}
$$

When $i=\frac{n}{2}, D\left(C_{4_{i}}\right)=\{5 n+5,6 n+5,5 n+5,6 n+5\}$.
Then the list of difference set of 4 -cycles covers each element of $\left\{Z_{6 n+5}^{*}-(n)\right\} \cup\{6 n+5\}$ exactly twice. Correspondingly, the list of difference set of $(6 n+5)$-cycles calculates as follows:

$$
\begin{aligned}
& D\left(C_{6 n+5}^{*}\right)= D\left(P_{1}^{*}\right) \cup D\left(P_{2}^{*}\right) \cup D\left(P_{3}^{*}\right) \cup D\left(P_{1}^{*}, P_{2}^{*}\right) \\
& \cup D\left(P_{2}^{*}, P_{3}^{*}\right) \cup D\left(P_{3}^{*}, P_{1}^{*}\right), \\
& D\left(P_{1}^{*}\right)=\{6 n+3,6 n+2, \ldots, 2 n+4,2 n+3\}, D\left(P_{2}^{*}\right)=\{2,1\}, \\
& D\left(P_{3}^{*}\right)=\{4,5, \ldots, 2 n+1,2 n+2\}, D\left(P_{1}^{*}, P_{2}^{*}\right)=D(4 n+5,3 n+5)=\{n\}, \\
& D\left(P_{2}^{*}, P_{3}^{*}\right)=D(3 n+4,9 n+8)=\{6 n+4\}, D\left(P_{3}^{*}, P_{1}^{*}\right)=D(12 n+9,2)=\{3\} .
\end{aligned}
$$

As clearly shown, in the previous equation, the vertices of $6 n+5$-cycles cover every element of $Z_{6 n+5}^{*}$ exactly twice except $\{n\}$ four times. Thus,
we realize now that $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is $\left(4 K_{12 n+10}, \delta\right)$-difference system, n is even. Then $\delta=\left\{C_{4}^{3 n+2}, C_{6 n+5}^{2}\right\}$ is starter set for the $\operatorname{NCCS}\left(4 K_{12 v+10}, \delta\right)$ when n is even.

Case 2. There exists a full cyclic $\left(m_{1}, \ldots, m_{r}\right)$-cycle system of $4 K_{12 n+2}, \operatorname{NCCS}\left(4 K_{12 n+2}, \delta\right)$.

Proof. We also have two subcases:
Subcase 1. n is even.
When $n=2, v=26$, let $\delta=\left\{C_{4}^{6}, C_{7}^{2}, C_{6}^{2}\right\}$ be the starter set of $\operatorname{NCCS}\left(4 K_{26}, \delta\right)$ as follows:

$$
\begin{aligned}
& C_{4_{1}}=(1,25,14,12), C_{4_{2}}=(2,24,15,11), C_{4_{3}}=(3,23,16,10), \\
& C_{4_{4}}=(4,22,17,9), C_{4_{5}}=(5,21,18,8), C_{4_{6}}=(6,19,7,20), \\
& C_{7}^{*}=(13,2,12,3,11,4,10), C_{7}^{* *}=(13,24,14,23,15,22,16), \\
& C_{6}^{*}=(6,1,5,17,19,18), C_{6}^{* *}=(20,25,21,9,7,8) .
\end{aligned}
$$

It is straightforward to check that δ is actually a starter set of $\operatorname{NCCS}\left(4 K_{26}, \delta\right)$.

When $n \geq 4$, suppose $\delta=\left\{C_{4}^{3 n}, C_{2 n+2}^{2}, C_{4 n-1}^{2}\right\}$ is the starter set of $\operatorname{NCCS}\left(4 K_{12 n+2}, \delta\right)$ such that the list of 4 -cycles is:

$$
\begin{aligned}
C_{4_{i}} & =\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n}\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right) \\
& =\bigcup_{\substack{i=1 \\
i \neq \frac{5+4}{2}}}^{3 n}(i, 12 n+2-i, 6 n+1+i, 6 n+1-i),
\end{aligned}
$$

when $i=\frac{5 n+4}{2}$ let

$$
\begin{gathered}
\text { A Near Cyclic }\left(m_{1}, m_{2}, \ldots, m_{r}\right) \text {-cycle System of Complete } \ldots \\
C_{4_{i}}=\left(\frac{5 n+4}{2}, 6 n+1-\frac{5 n+4}{2}, 12 n+2-\frac{5 n+4}{2}, 6 n+1+\frac{5 n+4}{2}\right) .
\end{gathered}
$$

While we consider $C_{4 n-1}^{*}$ and $C_{4 n-1}^{* *}$ that are adjoined ($4 n-1$)-cycles such that

$$
\begin{aligned}
& C_{4 n-1}^{*}=(6 n+1,2,6 n, 3,6 n-1,4, \ldots, 2 n-1,4 n+3,2 n, 4 n+2), \\
& C_{4 n-1}^{* *}=(6 n+1,12 n, 6 n+2,12 n-1,6 n+3, \ldots, 10 n+3,8 n-1,10 n+2,8 n) .
\end{aligned}
$$

As well, we consider that $C_{2 n+2}^{*}$ and $C_{2 n+2}^{* *}$ are adjoined $(2 n+2)$ cycles such that

$$
\begin{aligned}
& C_{2 n+2}^{*} \\
= & (2 n+2,1,2 n+1,8 n+1,10 n-1,8 n+2,10 n-2, \ldots, 9 n+2,9 n-1,9 n+1,9 n), \\
& C_{2 n+2}^{* *} \\
= & (10 n, 12 n+1,10 n+1,4 n+1,2 n+3,4 n, 2 n+4, \ldots, 3 n, 3 n+3,3 n+1,3 n+2) .
\end{aligned}
$$

Similarly, it will be following the same manner of the previous case to prove that the set δ is the starter set of $4 K_{12 n+2}$. We will divide the proof into two parts as follows:

Part 1. In this part, we prove a near-four-factor. So, we need to calculate the vertices $V\left(\bigcup_{i=1}^{3 n} C_{4_{i}}\right)=c_{1, i} \cup c_{2, i} \cup c_{3, i} \cup c_{4, i}, 1 \leq i \leq 3 n$ such that

$$
\begin{gathered}
c_{1, i}=i, c_{2, i}=12 n+2-i, c_{3, i}=6 n+1+i, \\
c_{4, i}=6 n+1-i, 1 \leq i \leq 3 n+2, i \neq \frac{5 n+4}{2} . \\
c_{1, i}=\{1,2,3, \ldots, 3 n\}-\left\{\frac{5 n+4}{2}\right\}, c_{2, i}=\{12 n+1,12 n, \ldots, 9 n+2\}-\left\{\frac{19 n}{2}\right\}, \\
c_{3, i}=\{6 n+2,6 n+3, \ldots, 9 n+1\}-\left\{\frac{17 n+6}{2}\right\},
\end{gathered}
$$

$c_{4, i}=\{6 n, 6 n-1, \ldots, 3 n+1\}-\left\{\frac{7 n-2}{2}\right\}$.
And when $i=\frac{5 n+4}{2}$, then $V\left(C_{4_{i}}\right)=\left\{\frac{5 n+4}{2}, \frac{7 n-2}{2}, \frac{19 n}{2}, \frac{17 n+6}{2}\right\}$.
At the same time, the vertex set of remaining cycles can be written as follows:

$$
\begin{aligned}
& V\left(C_{4 n-1}^{*}\right)=\{2,3,4, \ldots, 2 n\} \cup\{4 n+2,4 n+3, \ldots, 6 n+1\}, \\
& V\left(C_{4 n-1}^{* *}\right)=\{6 n+1,6 n+2, \ldots, 8 n\} \cup\{10 n+2,10 n+3, \ldots, 12 n\}, \\
& V\left(C_{2 n+2}^{*}\right)=\{1,2 n+1,2 n+2\} \cup\{8 n+1,8 n+2,8 n+3, \ldots, 10 n-2,10 n-1\}, \\
& V\left(C_{2 n+2}^{* *}\right)=\{12 n+1,10 n, 10 n+1\} \cup\{2 n+3,2 n+4,2 n+5, \ldots, 4 n, 4 n+1\} .
\end{aligned}
$$

Simply we can note that $V(\delta)$ covers $\left\{Z_{12 n+2}^{*}\right\}$ exactly twice.
Part 2. In this part, we prove that $\delta=\left\{C_{4}^{3 n}, C_{4 n-1}^{2}, C_{2 n+2}^{2}\right\}$ is the $\left(4 K_{12 n+2}, \delta\right)$-difference system. So, we check the difference as follows:

The list of difference set of all 4-cycles $\left(\bigcup_{i=1}^{3 n} D\left(C_{4_{i}}\right)\right)$ is determined as follows:

$$
\begin{aligned}
& \bigcup_{i=1}^{3 n} D\left(C_{4_{i}}\right)=\bigcup_{i=1}^{3 n} D\left(c_{j, i}, c_{j+1, i}\right), 1 \leq j \leq 4 \text {, where } c_{5, i}=c_{1, i}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n} D\left(c_{1, i}, c_{2, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n}(2 i)=\{2,4, \ldots, 6 n\}-\{5 n+4\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n} D\left(c_{2, i}, c_{3, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n}(6 n+1-2 i) \\
& =\{6 n+3,6 n+1, \ldots, 3,1\}-\{n-3\},
\end{aligned}
$$

$$
1687
$$

Also, when $i=\frac{5 n+4}{2}, D\left(C_{4_{i}}\right)=\{n-3,6 n+1, n-3,6 n+1\}$.
Then the list of difference set of all 4-cycles $\left(D\left(C_{4}^{3 n}\right)\right)$ covers each element of $\left\{Z_{6 n+1}^{*}-(5 n+4)\right\} \cup\{6 n+1\}$ precisely twice. Correspondingly, the list of difference set of remaining cycles $\left\{C_{2 n+2}^{*}, C_{2 n+2}^{* *}, C_{4 n-1}^{*}, C_{4 n-1}^{* *}\right\}$ is computed as below:

$$
\begin{aligned}
& D\left(C_{4 n-1}^{*}\right)=D\{(6 n+1,2,6 n, 3,6 n-1,4, \ldots, 2 n-1,4 n+3,2 n, 4 n+2)\}, \\
& D\left(C_{4 n-1}^{* *}\right)=\{6 n-1,6 n-2,6 n-3, \ldots, 2 n+3,2 n+2\} \cup\{2 n-1\} .
\end{aligned}
$$

Since $C_{4 n-1}^{*}$ and $C_{4 n-1}^{* *}$ are adjoined cycles in $4 K_{12 n+2}, \quad D\left(C_{4 n-1}^{* *}\right)=$ $D\left(C_{4 n-1}^{*}\right)$.

We also have:

$$
\begin{aligned}
D\left(C_{2 n+2}^{*}\right)= & D\{(2 n+2,1,2 n+1,8 n+1,10 n-1,8 n+2, \\
& 10 n-2, \ldots, 9 n+2,9 n-1,9 n+1,9 n)\} \\
= & \{2 n+1,2 n, 6 n, 2 n-2,2 n-3,2 n-4, \ldots, 3,2,1\} \cup\{5 n+4\} .
\end{aligned}
$$

Since $C_{2 n+2}^{*}$ and $C_{2 n+2}^{* *}$ are adjoined cycles in $4 K_{12 n+2}, D\left(C_{2 n+2}^{* *}\right)=$ $D\left(C_{2 n+2}^{*}\right)$.

$$
\begin{aligned}
& \text { A Near Cyclic (} m_{1}, m_{2}, \ldots, m_{r} \text {)-cycle System of Complete ... } \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n} D\left(c_{3, i}, c_{4, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{n+4}{2}}}^{3 n}(2 i)=\{2,4, \ldots, 6 n\}-\{5 n+4\}, \\
& \bigcup_{\substack{i=1 \\
i \neq \frac{n+4}{2}}}^{3 n} D\left(c_{4, i}, c_{1, i}\right)=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+4}{2}}}^{3 n}(6 n+1-2 i) \\
& =\{6 n+3,6 n+1, \ldots, 3,1\}-\{n-3\} \text {. }
\end{aligned}
$$

Thus, each element in the multiset $Z_{6 n+1}^{*}$ is covered by $D\left(C_{4 n-1}^{*}\right) \cup$ $D\left(C_{4 n-1}^{* *}\right) \cup D\left(C_{2 n+2}^{*}\right) \cup D\left(C_{2 n+2}^{* *}\right)$ twice except $\{5 n+4\}$ four times. In view of previous observation, we conclude that $\delta=\left\{C_{4}^{3 n}, C_{2 n+2}^{2}, C_{4 n-1}^{2}\right\}$ is $\left(4 K_{12 n+2}, \delta\right)$-difference system, n is even.

Subcase 2. n is odd.
Suppose $\delta=\left\{C_{4}^{3 n}, C_{2 n+2}^{2}, C_{4 n-1}^{2}\right\}$ is the starter set of cycles of $\operatorname{NCCS}\left(4 K_{12 n+2}, \delta\right)$ such that the list of 4-cycles is:

$$
\begin{aligned}
& C_{4_{i}}=\bigcup_{\substack{i=1 \\
i \neq \frac{5 n+1}{2}}}^{3 n}\left(c_{1, i}, c_{2, i}, c_{3, i}, c_{4, i}\right) \\
= & \int_{\substack{i=1 \\
i \neq \frac{5 n+1}{2}}}^{3 n}(i, 12 n+2-i, 6 n+1+i, 6 n+1-i),
\end{aligned}
$$

when $i=\frac{5 n+1}{2}$, let

$$
C_{4_{i}}=\left(\frac{5 n+1}{2}, 12 n+2-\frac{5 n+1}{2}, 6 n+1-\frac{5 n+1}{2}, 6 n+1+\frac{5 n+1}{2}\right)
$$

whereas that $C_{4 n-1}^{*}$ and $C_{4 n-1}^{* *}$ are adjoined $(4 n-1)$-cycles such that

$$
\begin{aligned}
& C_{4 n-1}^{*}=(6 n+1,2,6 n, 3,6 n-1,4, \ldots, 2 n-1,4 n+3,2 n, 4 n+2), \\
& C_{4 n-1}^{* *}=(6 n+1,12 n, 6 n+2,12 n-1,6 n+3, \ldots, 10 n+3,8 n-1,10 n+2,8 n) .
\end{aligned}
$$

Also, we consider that $C_{2 n+2}^{*}$ and $C_{2 n+2}^{* *}$ are adjoined $(2 n+2)$-cycles such that $C_{2 n+2}^{*}=\left(P_{1}^{*}, P_{2}^{*}\right), C_{2 n+2}^{* *}=\left(P_{1}^{* *}, P_{2}^{* *}\right)$, where $\left\{P_{i}^{*}, P_{i}^{* *} \mid 1 \leq\right.$ $i \leq 2\}$ are paths as follows:

$$
P_{1}^{*}=[2 n+2,1,10 n+1],
$$

$$
\begin{aligned}
& P_{2}^{*}=[4 n+1,2 n+3,4 n, 2 n+4, \ldots, 3 n, 3 n+3,3 n+1,3 n+2], \\
& P_{1}^{* *}=[10 n, 12 n+1,2 n+1], \\
& P_{2}^{* *}=[8 n+1,10 n-1,8 n+2,10 n-2, \ldots, 9 n+2,9 n-1,9 n+1,9 n] .
\end{aligned}
$$

Obviously, as the Subcase 1, it can be found that $V(\delta)$ covers each element of $Z_{12 n+2}^{*}$ exactly twice and the list of difference set of all 4-cycles $\left(D\left(C_{4}^{3 n}\right)\right)$ covers each element of $\left\{Z_{6 n+1}^{*}-n\right\}$ precisely twice, whereas the difference set of $(4 n-1)$-cycles $\left(D\left(C_{4 n-1}^{*}\right) \cup D\left(C_{4 n-1}^{* *}\right)\right)$ contains elements $\{6 n-1,6 n-2,6 n-3, \ldots, 2 n+3,2 n+2\} \cup\{2 n-1\}$ twice. Now, we calculate the difference set of $(2 n+2)$-cycles as follows:
$D\left(C_{2 n+2}^{*}\right)=D\left(P_{1}^{*}\right) \cup D\left(P_{2}^{*}\right) \cup D\left(P_{1}^{*}, P_{2}^{*}\right) \cup D\left(P_{2}^{*}, P_{1}^{*}\right)$,
$D\left(P_{1}^{*}\right)=\{2 n+1,2 n\}, D\left(P_{2}^{*}\right)=\{2 n-2,2 n-3,2 n-4, \ldots, 3,2,1\}$,
$D\left(P_{1}^{*}, P_{2}^{*}\right)=D(10 n+1,4 n+1)=\{6 n\}, D\left(P_{2}^{*}, P_{1}^{*}\right)=D(2 n+2,3 n+2)=\{n\}$.
Then all elements in the set $\{1,2,3, \ldots, 2 n-3,2 n-2,2 n, 2 n+1,6 n\}$ appear in $D\left(C_{2 n+2}^{*}\right)$ exactly once except $\{n\}$ twice. Therefore, the multiset of $D\left(C_{4 n-1}^{*}\right) \cup D\left(C_{4 n-1}^{* *}\right) \cup D\left(C_{2 n+2}^{*}\right) \cup D\left(C_{2 n+2}^{* *}\right)$ covers each element of $\left\{Z_{6 n+1}^{*}\right\}$ exactly twice except $\{n\}$ four times.

Hence, $\delta=\left\{C_{4}^{3 n}, C_{2 n+2}^{2}, C_{4 n-1}^{2}\right\}$ is $\left(4 K_{12 n+2}, \delta\right)$-difference system, n is odd. Then $\delta=\left\{C_{4}^{3 n}, C_{2 n+2}^{2}, C_{4 n-1}^{2}\right\}$ is starter set of $\operatorname{NCCS}\left(4 K_{12 n+2}, \delta\right)$.

Acknowledgement

The authors thank the anonymous referees for their numerous suggestions and comments which improved the original manuscript.

References

[1] B. Alspach, Research problems, Discrete Math. 36(3) (1981), 333-334.
[2] B. Alspach and H. Gavlas, Cycle decompositions of K_{n} and $K_{n}-I$, J. Combin. Theory Ser. B 81(1) (2001), 77-99.
[3] D. Bryant, D. Horsley and W. Pettersson, Cycle decompositions V: Complete graphs into cycles of arbitrary lengths, Proc. London Math. Soc., 2013, doi: 10.1112/plms/pdt051.
[4] D. Bryant, D. Horsley, B. Maenhaut and B. R. Smith, Decompositions of complete multigraphs into cycles of varying lengths, 4 August 2015, arXiv: 1508.00645 v 1 [math.CO].
[5] M. Buratti, A description of any regular or 1-rotational design by difference methods, Booklet of the Abstracts of Combinatorics, 2000, pp. 35-52.
[6] A. Kotzig, Decompositions of a complete graph into 4 k -gons, Matematický Casopis 15 (1965), 229-233.
[7] K. Matarneh and H. Ibrahim, Array cyclic ($5^{*}, 6^{* *}, 4$) -cycle design, Far East J. Math. Sci. (FJMS) 100(10) (2016), 1611-1626.
[8] R. Peltesohn, Eine Lösung der beiden Heffterschen Differenzenprobleme, Compos. Math. 6 (1939), 251-257.
[9] A. Rosa, On cyclic decompositions of the complete graph into $(4 m+2)$-gons, Matematicko-Fyzikálny Časopis 16(4) (1966), 349-352.
[10] A. Rosa, On the cyclic decompositions of the complete graph into polygons with an odd number of edges, Časopis Pest. Math. 91 (1966), 53-63.
[11] M. Šajna, Cycle decompositions III: complete graphs and fixed length cycles, J. Combin. Des. 10(1) (2002), 27-78.

