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Abstract 

Elastic net (ELNET) regression is a hybrid statistical technique used for regularizing and selecting necessary predictor 

variables that have a strong effect on the response variable and deal with multicollinearity problem when it exists between 

the predictor variables. The empirical mode decomposition (EMD) algorithm is used to decompose the nonstationary and 

nonlinear dataset into a finite set of orthogonal intrinsic mode function components and one residual component. This 

study mainly aims to apply the proposed ELNET-EMD method to determine the effect of the decomposition components 

of multivariate time-series predictors on the response variable and tackle the multicollinearity between the decomposition 

components to enhance the prediction accuracy for building a fitting model. A numerical experiment and a real data 

application are applied. Results show that the proposed ELNET-EMD method outperforms other existing methods by 

capable of identifying the decomposition components that have the most significance on the response variable despite 

the high correlation between the decomposition components and by improving the prediction accuracy. 

 

Keywords- Empirical mode decomposition, Elastic net regression, LASSO regression, Multicollinearity, Ridge 

regression. 

 

 

 

1. Introduction  
Several studies such as medicine, and economics interested in using time series datasets, where 

these datasets are often non-stationary and non-linear simultaneously. However, there is a lack of 

statistical methods that can effectively extract oscillatory patterns from the data because the 

traditional methods assumed that the dataset should be either stationary or linear. For example, 

Fourier decomposition (Titchmarsh, 1948), and wavelet decomposition (Chan, 1994). Recently, 

Huang et al. (1998) proposed the empirical mode decomposition (EMD) method, which aims to 

decompose non-stationary and non-linear data with keeping the time domain. The EMD method 

does not require any restrictions and pre-conditions on the nature of the data, such as stationary or 

linearity, in contrast to traditional methods.  

 

EMD method divided the original signal into a finite set of decomposition components (i.e., 

intrinsic mode function (IMF) components and one residual component). Each of the 
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decomposition components has different information such as wavelength, amplitude, and 

frequency (Huang, 2014). Therefore, these components can be used as new predictor variables to 

predict the response variable and improve the prediction accuracy of regression analysis. 

Meanwhile, multicollinearity may exist among the decomposition components, especially in the 

case of dealing with original multivariate predictors. Multicollinearity defined as a relationship 

between the predictor variables, which increases the variance. This results in a wrong sign of 

coefficients and misleads the selection of a fitting model (Jadhav et al., 2014).  

 

Elastic net (ELNET) regression analysis (Zou and Hastie, 2005) is a hybrid between LASSO 

(Tibshirani, 1996) and Ridge regression (Hoerl and Kennard, 1970). ELNET regression used to 

regularize and select the important predictor variables to obtain a simple model with the most 

significant predictor variables despite high multicollinearity between the predictors. ELNET can 

remove or select the predictor variables that have a high correlation in the final model and enhance 

the prediction accuracy (Liu and Li, 2017). 

 

The behavior of the time series variables used in regression analysis, such as nonstationary and 

nonlinear, and multicollinearity problem may affect the prediction accuracy in model selection. 

This situation indicates several difficulties in the regression analysis with these existing issues. To 

address these gaps, the ELNET regression based on the EMD method (ELNET-EMD) is proposed 

in this study. The purpose of this study is to investigate the effect of the decomposition components 

of the original multivariate time-series predictors on the response variable and combat the 

correlation between the decomposition components to obtain accurate and reliable results. Where 

the EMD will be used to decompose the nonstationary and nonlinear multi-predictors signals of the 

data separately into a finite set of IMF components and one residual component. After that, all the 

decomposition components of the multi-predictors via EMD will be used as a new predictor 

variable in the ELNET regression to select the predictors which have the most effect on the response 

variable. 

 

The rest of the paper is organized as follows. Section 2 presents the literature review. Section 3 

describes the EMD method, ELNET regression, the ELNET-EMD method, and the test criteria. 

Section 4 discusses and applies the method through numerical experiments and gives an analysis. 

Section 5 illustrates the method by applying exchange rate data and provides an analysis and a 

discussion of the findings. Section 6 elaborates the conclusions of the study. 

 

2. Literature Review 
Recent studies have focused on using the EMD method combined with other established statistical 

regression or forecasting methods. This method has been successfully applied in several scientific 

fields. For instance, multiple linear regression models with forward stepwise regression (SR) 

methods based on EMD (Yang et al., 2011). The novel forecasting model based on the neural 

network and EMD (Chen et al., 2012). The least absolute shrinkage and selection operator 

(LASSO) regression based on ensemble EMD (EEMD) (Shen and Lee, 2012). 

 

Moreover, LASSO regression and deep belief networks based on EEMD (Chu et al., 2018). The 

ELNET and the support vector regression (SVR) model based on EEMD (Plakandaras et al., 2015). 

LASSO regression based on decomposition components via EMD method (Qin et al., 2016). 

ELNET regression based on EMD method proposed to deal with nonlinear and non-stationary 

original univariate time-series predictor case (Al-Jawarneh et al., 2020). Kernel Ridge regression 

based on the decomposition components via EMD (Naik et al., 2018). Furthermore, LASSO 
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regression and noise-assisted multivariate EMD (NA-MEMD) (Masselot et al., 2018), SVR and 

particle swarm optimization based on EMD (Hong and Fan, 2019).  

 

3. Methodology  
This section briefly describes the applied methods. The first method is the EMD method by sifting 

process to decompose the original signal. The second method pertains to the technical penalized 

regularization method by ELNET regression. This section also discusses the proposed ELNET-

EMD method. 

 

3.1 EMD Method 
Huang et al. proposed the EMD in 1998. The EMD focuses on the nonstationary and nonlinear 

time-series datasets by using the sifting process of the technical algorithm to decompose the 

original signal into a finite set of orthogonal decomposition components. Such components have 

different oscillatory patterns and by keeping the time domain of the signal unchanged. Their 

orthogonal decomposition components are called IMF components and one residual component ( 

Huang, 2014; Moore et al., 2018). 

 

3.1.1 Sifting Process 
The iterative algorithm process of the EMD for extracting all the IMF components and one residual 

component is called the sifting process. It separates the original signal into orthogonal components 

of a non-overlapping time scale (Huang, 2014). The sifting process to decompose the original signal 

𝑥(𝑡) is summarized as follows: 

 

Step 1: The first step entails inserting the original signal 𝑥(𝑡) with repetition indicators that are 

equal to one (𝑘 , 𝑗 = 1). 

 

Step 2: All the local maximum and a local minimum of the original signal 𝑥(𝑡) are determined. 

 

Step 3: By using the cubic spline curve, all local maximum and local minimum are connected 

separately to build an upper envelope 𝑈(𝑡) and a lower envelope 𝐿(𝑡), respectively, where 

all the original signal must be between these envelopes. 

 

Step 4: The mean envelope value between the upper and lower envelopes is determined to build a 

new line curve, which represents the mean envelope by using the following equation: 

 

( ) ( ( ) ( )) / 2jM t U t L t                                                                                                                                                 (1) 

 

Step 5: Using the difference between the original signal 𝑥(𝑡) and the mean envelope value 𝑀𝑗(𝑡) 

as the new function 𝐻𝑗(𝑡): 

 

( ) ( ) ( )j jH t x t M t                                                                                                                        (2) 

 

We verify whether the new function 𝐻𝑗(𝑡) satisfies the conditions of IMF. If 𝐻𝑗(𝑡) satisfies the 

conditions of IMF, then 𝐻𝑗(𝑡) = 𝐶𝑘(𝑡) , where 𝐶𝑘(𝑡) is the k-th IMF { 𝑘 = 1,2, … , 𝐾} and we 
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continue to step 6. If not, then we replace 𝐻𝑗(𝑡) with 𝑥(𝑡) and repeat the operation from step 1 with 

repetition indicators 𝑗 = 𝑗 + 1 and 𝑘 = 1. 

 

Step 6: This step involves calculating the residual component 𝑅𝑘(𝑡) as in the following formula:  

 

1 0
( ) ( ) ( ); ( ) ( )

k k k
R t R t C t R t x t


                                                                                                                      (3) 

 

We check whether the residual component 𝑅𝑘(𝑡) is a monotonic function or satisfies the stoppage 

criterion of the standard deviation 𝑆𝐷 for two consecutive successive siftings of the results as 

follows: 

 

2
1

2
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( ( ) ( ))
; 0.2 0.3

( )
jj

j j
j

T

t

H t H t
SD SD

H t





                                                                               (4) 

 

If not, then we replace 𝑅𝑘(𝑡) with 𝑥(𝑡) and repeat the operation from step 1 with repetition 

indicators 𝑘 = 𝑘 + 1. If yes, then we save all the IMF and residual components and end the sifting 

process. 

 

The original signal 𝑥(𝑡) is the linear combination of the finite set of orthogonal IMF 
{𝐶𝑘(𝑡): 𝑘 = 1,2, … , 𝐾} and one monotonic residual 𝑅(𝑡) that are extracted via EMD, as in the 

following formula: 

 

1

( ) ( ) ( )
K

k
k

x t C t R t


                                                                                                                     (5)  

 

3.1.2 IMFs 
The IMF's represent a new orthogonal design for the signals resulting from the division of the main 

original signal by using EMD. Each of IMF {𝐶𝑘(𝑡); 𝑘 = 1,2, … , 𝐾} components and residual 𝑅(𝑡) 

component has different and easy physical significant meanings. The IMF component function that 

satisfies two conditi (Huang et al., 1998; Huang, 2014) are as follows: 

 

(1) Over the whole length of a signal, the numbers of local extrema (LE) (maximum and minimum) 

and the number of zero-crossings (ZCs) must be either equal or differ at most by one. 

 

(2) At any point on a signal, the envelope mean value 𝑀(𝑡) between the upper envelope 𝑈(𝑡) 

defined by the local maximum and the lower envelope 𝐿(𝑡) defined by local minimum is equal 

to zero.   

 

The first condition indicates that each IMF has only one local maximum or local minimum between 

two consecutive ZCs; meanwhile, the second condition explains that all the IMFs are stationary, 

which makes the analysis process highly flexible using these components (Raghuram et al., 2012). 

 

3.2 ELNET Regression 
In 2005, Zou and Hastie proposed ELNET regression. It is a hybrid technical penalized least square 

regression method that involves regularization and variable selection (Zou and Hastie, 2005). The 
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ELNET regression is a combination of two best techniques of shrinkage regression methods, 

namely, Ridge regression (𝐿2 penalty) for dealing with high-multicollinearity problems and the 

LASSO regression (𝐿1 penalty) for feature selection of regression coefficients (Wang et al., 2019). 

 

The ELNET regression reduces the number of predictor variables by using the shrinkage of the 

coefficient regression toward zero or equal to zero for the less important variables by using the sum 

of the absolute values of the coefficient variables (𝐿1 norm) multiplied by the tuning parameter 𝜆1. 

The high correlation between the predictor variables is treated using the sum of the squared 

coefficient variables (𝐿2 norm) multiplied by the tuning parameter 𝜆2 . This principle of the ELNET 

regression contributes to the production of an interpretable fitting model by limiting unnecessary 

variables that do not exist in the final model to increase the prediction accuracy. The ELNET deals 

with multicollinearity by keeping the predictor variables with high correlation into or out of the 

fitted model ( Liu and Li, 2017). 

 

The model structure of the multiple linear regression, which builds the relationship between the 

response variable and the predictor variables, is derived as follows: 

 

0 1 1 2 2
...

i i i ip p i
y x x x                                                                                                 (6) 

 

𝑖 = 1,2, … , 𝑛 and 𝑗 = 1,2, … , 𝑝 , where 𝑦𝑖 is the i-th response variable, 𝛽0 is the intercept, 𝑥𝑖𝑗 is the 

j-th predictor variable of the i-th observation, 𝛽𝑗  is the regression coefficient of the j-th predictor 

variable, which represents the average effect on 𝑦𝑖 of per one unit change in the j-th predictor 

variable 𝑥𝑖𝑗, and ε 𝑖  is the random error. For simplicity, we assume that the predictors and response 

variables are standardized by subtracting from the means and dividing by the standard deviations 

to obtain zero mean and unit variance (Melkumova and Shatskikh, 2017). 

 

The traditional ordinary least squares (OLS) regression method is used to estimate the unknown 

regression coefficients by minimizing the residual sum of squared (𝑅𝑆𝑆). Therefore, the 𝑅𝑆𝑆 can 

be computed as follows: 

 

2

1 1

( )
pn

i ij j

i j

RSS y x 
 

                                                                                                                         (7) 

 

Using Equation (7), the OLS regression coefficient estimation for the j-th element 𝛽 (i.e., 𝛽𝑗: 𝑗 =

0,1,2, … , 𝑝) is calculated by minimizing the 𝑅𝑆𝑆 form (Montgomery et al., 2012) as in the following 

formula: 

 

2

11

ˆ arg min ( )
n p

OLS

ij j

ji

i= xy





                                                                                             (8) 

 

The ELNET regression method is a penalized OLS estimator by adding the penalty terms (i.e., 

𝐿1 and 𝐿2  penalties) to estimate the regression coefficients  𝜷̂ (Zou and Hastie, 2005) as follows: 
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where, 𝜆1 and 𝜆2   are the tuning parameters and positive numeric values (𝜆 1, 𝜆2 > 0), respectively; 

they are automatically selected using cross-validation (CV). The tuning parameters control the 

strength of the regularization and selection of the predictor variables (Zou and Hastie, 2005). By 

denoting 𝜆 1 = 2𝑛𝜆𝛼 and 𝜆 2 = 𝑛𝜆(1 − 𝛼) (Haws et al., 2015), Equation (9) becomes equivalent 

to the following: 
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                            (10) 

where, 𝛼 is a regularization parameter (0 ≤ 𝛼 ≤ 1), and 𝜆   is a tuning parameter (𝜆 > 0).  

 

The ELNET estimation represents the form of Ridge regression when 𝛼 = 0, while the ELNET 

estimation represents the form of LASSO regression when 𝛼 = 1. Therefore, the ELNET 

regression is setting the appropriate value for alpha between zero and one. The two penalty 

functions in ELNET regression are combined, where the 𝐿2 penalty is used to stabilize the 

𝐿1 penalty regularization, while the 𝐿1 penalty is used to generate a sparse model (Liu and Li, 2017). 

Therefore, Ridge and LASSO regressions are special cases of ELNET regression (Haws et al., 

2015). The difference between the two penalties is the principle of the shrinkage of the regression 

coefficient and dealing with the correlation between the predictor variables. 

 

 3.3 Proposed ELNET-EMD Method 
The ELNET-EMD is designed to explain the significance of the decomposition components of 

multivariate time-series predictors  𝑥𝑗; 𝑗 = 1,2,3, … 𝑝 on the response variable 𝑦 by selecting the 

most necessary components and tackle the multicollinearity using the following process: 

 

(1) Decompose the original multi-predictors 𝑥𝑗(𝑡) separately into a finite set of orthogonal 𝐶𝑗,𝑘(𝑡) 

components and one residual 𝑅𝑗(𝑡) component via EMD, where the original time-series 

predictor 𝑥𝑗(𝑡) is the summation of all decomposition components of the j-th predictor: 

 

,

1

( ) ( ) ( )
K

j j k j

k

x t C t R t


                                                                                                               (11) 

 

(2) Using Equation (6), all the decomposition components of the multi time-series predictors via 

EMD will be used as new predictor variables to explain the response variable 𝑦(𝑡): 
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(3) The ELNET regression will be used as in the following formula: 
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                (13) 

 

The numerical experiments and real time-series data will be used to compare between the ELNET-

EMD method against seven methods, namely, OLS-EMD, SR-EMD, Ridge-EMD, LASSO-EMD, 

The smoothly clipped absolute deviation (SCAD) (Fan and Li, 2001) based on EMD (SCAD-

EMD), The minimax concave penalty (MCP) (Zhang, 2010) based on EMD (MCP-EMD), and Ad-

LASSO (Zou, 2006) based on EMD (Ad-LASSO-EMD) methods. 

 

To check the correlation among the decomposition components, the variance inflation factor (VIF) 

test will be used to assess the correlation value between the decomposition components. The 

decomposition components will be free from multicollinearity when the value of VIF is less than 

10 (Jadhav et al., 2014) . The VIF form is presented as follows: 

 

, 2

,

1

1
j k

j k

VIF
R




                                                                                                                             (14) 

 

Where, 𝑅𝑗,𝑘
2  is the coefficient of determination of the decomposition component 𝑗, 𝑘 on the 

remaining components in the model. 

 

In this article, three criteria tests are used, that is, (a) root mean square error (𝑅𝑀𝑆𝐸), (b) mean 

absolute error (𝑀𝐴𝐸), and (c) mean absolute percentage error (𝑀𝐴𝑃𝐸).  
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Where, 𝑦𝑖 is the actual value, 𝑦̂𝑖 is the estimated value, and n is the sample size.   

 

4. Simulation Studies 
We comprehensively explain the numerical experiment, which is simulated by the sine and cosine 

functions used to apply the methods, and the numerical results and discussion. 

 

4.1 Numerical Experiment 
The sine and cosine wave functions are used to generate simulated signals to demonstrate the ability 

of the ELNET-EMD method. These signals are numerical experiments that are employed in the 

application. 
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The numerical experiments are explained in two cases. In the first case, the predictor 

variables 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡) are fixed variables without white noise error. In the second case, 

the predictor variables have white noise error with normal distribution of zero mean and unit 

variance (i.e. 𝑥𝑗(𝑡) = 𝑥𝑗(𝑡) +  𝜀 ; ε~ 𝑖𝑖𝑑 N(0,1), 𝑗 = 1,2,3). The response variable is simulated 

according to one or two components from the predictor variables. This notion is in line with the 

simulation study proposed by (Qin et al., 2016; Al-Jawarneh et al., 2020) for generating variables. 

 

The datasets are simulated by predictors and response variables with the length of a sample size 

𝑛 = 110 and time sequence between zero and nine (0 ≤ 𝑡 ≤ 9 ). For the second case, 2,000 

replications of a sample size length 𝑛 = 110 are made. The datasets are divided into two parts of 

70% for training the model and 30% for testing and evaluating the performance criteria. The 

formula of the function test of the response and the predictor variables is presented as follows: 
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  
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   

   
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   

 

 

4.2 Numerical Results and Discussion 
 

 
 

Figure 1. Plots of the original signals. 

 

Figure 1 illustrates the shape of the original signals, where they neither show constant value over 

time. This property indicates that the predictor variables are nonstationary. 
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Figure 2. Decomposition of the main predictor signals  𝑥1(𝑡) 𝑥2(𝑡), and 𝑥3(𝑡) via EMD. 

 

 

Figure 2 shows the decomposition components via EMD method of the original multivariate 

predictors 𝑥1(𝑡), 𝑥2(𝑡) and 𝑥3(𝑡). The first predictor 𝑥1(𝑡) decomposed into five IMFs and one 

residual component. The second  𝑥2(𝑡) and third 𝑥3(𝑡) predictors decomposed into four IMFs and 

one residual component, separately. Each IMF component displays differences in physical meaning 

(i.e., wavelength, and frequency) compared with other IMF components; for example, the first IMF 

component, which is  {𝐶1,1(𝑡) , 𝐶2,1(𝑡), 𝐶3.1(𝑡)} has a high frequency and a short wavelength. This 

characteristic varies among the IMF components in which the frequency decrease, while the 

wavelength increases. The last component represents the trend of the original signal which is called 

the residual. Thus, each decomposition component has information concerning a particular 

frequency that is founded within the original signal. This finding contributes to the use of these 

components as new predictor variables. 
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Table 1 shows the values of the VIF (𝑉𝐼𝐹𝑗,𝑘) test of multicollinearity between the decomposition 

components for the original multivariate predictors via EMD. Based on the output of  𝑉𝐼𝐹𝑗,𝑘, 

several decomposition components obtain values larger than 10 (i.e., 𝑉𝐼𝐹1,6, 𝑉𝐼𝐹2,3, 𝑉𝐼𝐹2,5, 

and 𝑉𝐼𝐹3,3 > 10). This finding indicates that high multicollinearity (correlation) exists between the 

decomposition components. 

 

 
Table 1. Variance inflation factors (VIF) (case 1). 

 

𝑉𝐼𝐹1,1 𝑉𝐼𝐹1,2 𝑉𝐼𝐹1,3 𝑉𝐼𝐹1,4 𝑉𝐼𝐹1,5 𝑉𝐼𝐹1,6 𝑉𝐼𝐹2,1 𝑉𝐼𝐹2,2 

1.025 1.019 2.943 1.696 2.618 49.40 1.071 1.037 

𝑉𝐼𝐹2,3 𝑉𝐼𝐹2,4 𝑉𝐼𝐹2,5 𝑉𝐼𝐹3,1 𝑉𝐼𝐹3,2 𝑉𝐼𝐹3,3 𝑉𝐼𝐹3,4 𝑉𝐼𝐹3,5 

13.68 3.33 41.36 1.115 1.071 14.39 9.676 5.852 

*𝑗, 𝑘  is the k-th component of the original predictor j-th; 𝑗 = 1,2,3 

 

 

Figure 3 shows the CV and coefficient estimation plots of the ELNET-EMD. The first plot on the 

left represents CV at 𝐾 = 10, where the 𝑦-axis represents the mean square error (MSE), and the 𝑥-

axis represents the value of log(𝜆). The upper horizontal line represents the numbers of non-zero 

coefficients selected at the log(𝜆) value. The first vertical dotted line from the left is the location 

of the point selected at a minimum of the MSE (𝑚𝑖𝑛𝑀) rule, while the second vertical line denotes 

the location of the point selected at a minimum of MSE with the one-standard-error (1𝑠𝑒) rule. 

Thus, the increase in 𝜆 leads to a decrease in the number of non-zero coefficients entering into the 

final model according to the CV plot. Therefore, the selection of the 𝜆 value at the 𝑚𝑖𝑛𝑀 or 1𝑠𝑒 

rule is based on the optimal minimum MSE value. The second plot represents the coefficient 

estimation and explains the order in which the number of non-zero regression coefficients of the 

decomposition components will be entered into the final model. It provides a sign on the response 

variable at current 𝜆, which is the actual degree of freedom. Therefore, the number of non-zero 

coefficient estimation differs in relation to the selected value of 𝜆 at the 𝑚𝑖𝑛𝑀 or 1𝑠𝑒 rule. For 

example, 14 components are identified under the 𝑚𝑖𝑛𝑀 rule, while seven components are observed 

under the 1𝑠𝑒 rule.  

 

Table 2 illustrates the results of the 𝑅𝑆𝑆 values in the first case of the simulation for the regression 

methods at the values of lambda as selected by CV. The results show that the smallest 𝑅𝑆𝑆 value 

is for the ELNET-EMD model at the 1𝑠𝑒 rule (𝜆 =0.25958; 𝑅𝑆𝑆 =16.21). The 𝑅𝑆𝑆 value provides 

the best method for selecting important variables and for supporting the fitting regression models 

using the ELNET-EMD model. 
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Figure 3. 10- Cross-Validation (10-CV) estimation and the coefficient estimation for ELNET-EMD. 

 

 
Table 2. Residual sum of squares error (𝑅𝑆𝑆) values (Case 1). 

 

Method Rule 𝜆 𝑅𝑆𝑆 

OLS-EMD     21.51 12 

SR-EMD   19.32 7 

SCAD-EMD  0.044985 18.08 5 

MCP-EMD  0.048236 18.86 6 

Ridge-EMD 
𝑚𝑖𝑛𝑀 0.063766 19.57 8 

1𝑠𝑒 0.340295 16.55 2 

Ad-LASSO-EMD 
𝑚𝑖𝑛𝑀 0.086895 19.58 9 

1𝑠𝑒 1.705773 17.06 4 

LASSO-EMD 
𝑚𝑖𝑛𝑀 0.006681   20.18 11 

1𝑠𝑒 0.099198 17.03 3 

ELNET-EMD α = 0.24 
𝑚𝑖𝑛𝑀 0.019185   20.11 10 

1𝑠𝑒 0.259580 16.21 1 

* 1-12 is the rank of the methods from minimum to maximum values 

 

Table 3 explains the estimation of the coefficients of the decomposition components for each of 

the regression methods used in this study. Most regression methods can reduce the number of 

decomposition components, except for Ridge-EMD; these methods have the same numbers of 

coefficient, that is, all the decomposition components are entered into the final model. The numbers 

of nonzero coefficients of ELNET-EMD and other methods in the study are different from those of 

Ridge-EMD method. For the ELNET-EMD at 1𝑠𝑒 rule, the coefficient estimation equal to seven 

nonzero coefficients 𝐶1,2, 𝐶1,3, 𝐶2,1, 𝐶2,2, 𝐶2,3, 𝐶3,1, and 𝐶3,4 components enter the ELNET-EMD 

regression model with varying levels of significance. That is, the 𝐶1,3 and 𝐶2,3 components are more 

significant than other selected components on the response variable. 
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Table 3. Coefficients estimation for the decomposition components. 
 

 
OLS-

EMD 

SR-

EMD 
SCAD-EMD MCP-EMD 

Ridge-

EMD 

1𝑠𝑒 

Ad-LASSO-

EMD 

1𝑠𝑒 

LASSO-

EMD 

1𝑠𝑒 

ELNET-

EMD 
1𝑠𝑒 

𝐵1,1   0.002 0 0 0 - 0.006 0 0 0 

𝐵1,2   0.085   0.100   0.045   0.060   0.050 0 0   0.005 

𝐵1,3 - 0.617 - 0.583 - 0.577 - 0.680 - 0.496 - 0.531 - 0.574 - 0.484 

𝐵1,4   0.047 0   0.007 0 - 0.003 0 0 0 

𝐵1,5 - 0.130 0 0 - 0.006 - 0.074 0 0 0 

𝐵1,6 - 0.176 0 0 0 - 0.014 0 0 0 

𝐵2,1 - 0.248 - 0.262 - 0.259 - 0.259 - 0.185 - 0.158 - 0.164 - 0.161 

𝐵2,2 - 0.319 - 0.292 - 0.299 - 0.291 - 0.226 - 0.202 - 0.236 - 0.200 

𝐵2,3   0.609   0.609   0.614   0.388   0.324   0.320   0.391   0.300 

𝐵2,4   0.163 0   0.023 0   0.049 0 0 0 

𝐵2,5 - 0.069 0 0 0 - 0.001 0 0 0 

𝐵3,1 - 0.208 - 0.213   0.214 - 0.202 - 0.133 - 0.091 - 0.088 - 0.096 

𝐵3,2 - 0.086 0 - 0.029 - 0.026 - 0.040 0 0 0 

𝐵3,3 - 0.188 - 0.222 - 0.229 0 - 0.010 0 0 0 

𝐵3,4 - 0.006 0 0   0.164   0.106   0.062 0   0.084 

𝐵3,5   0.163 0   0.001   0.039   0.040 0 0 0 

 

Table 4 illustrates the performance criteria of the prediction accuracy of the regression methods 

using RMSE, MAE, and 𝑀𝐴𝑃𝐸 in the first case of the numerical experiment. The results show that 

the ELNET-EMD has the smallest error values in terms of RMSE, MAE, and 𝑀𝐴𝑃𝐸. Therefore, the 

ELNET-EMD method is highly reliable for the selected components with high prediction accuracy. 

 
Table 4. Performance criteria (Case1). 

 

* 1-8 is the rank of the methods from minimum to maximum values 

 

 

Moreover, in the second case of the numerical experiment, the white noise error ε ~ 𝑖𝑖𝑑 N(0,1) is 

added to the main predictor variables. After performing the same process in the first case, the results 

show that components are similar to those in the first case for the selected predictor variables. 

 
Table 5. Performance criteria (case 2). 

 

* 1-8 is the rank of the methods from minimum to maximum values 

Method 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 

OLS-EMD 0.7953 8 0.6680 8 1.4188 8 

SR-EMD 0.7539 7 0.6550 7 1.3498 7 

SCAD-EMD 0.7292 5 0.6414 5 1.3221 5 

MCP-EMD 0.7447 6 0.6475 6 1.3473 6 

Ridge-EMD 1𝑠𝑒 0.6978  2 0.6120 2 1.1732 2 

Ad-LASSO-EMD 1𝑠𝑒 0.7084 4 0.6227 3 1.2124 4 

LASSO-EMD 1𝑠𝑒 0.7077 3 0.6248 4 1.1884 3 

ELNET-EMD 1𝑠𝑒 0.6906 1 0.6063 1 1.1305 1 

Method  𝑅𝑆𝑆 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 

OLS-EMD 24.47 8 0.8512 8 0.6874 8 2.7763 8 

SR-EMD 24.31 7 0.8481 7 0.6854 7 2.7193 7 

SCAD-EMD 23.57 5 0.8358 5 0.6764 5 2.52165 

MCP-EMD 23.63 6 0.8368 6 0.6780 6 2.5299 6 

Ridge-EMD  22.34 4 0.8150 4 0.6567 4 2.0626 2 

Ad-LASSO-EMD 21.79 2 0.8048 2 0.6514 2 2.1924 4 

LASSO-EMD 22.04 3 0.8093 3 0.6546 3 2.0705 3 

ELNET-EMD  20.97 1 0.7894 1 0.6373 1 2.0573 1 
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Table 5 explains the mean performance criteria values (i.e., 𝑅𝑆𝑆, 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑀𝐴𝑃𝐸) for the 

ELNET-EMD method in the second case with the other regression methods. The results show that 

the ELNET-EMD has the smallest error value in these criteria tests. Therefore, the ELNET-EMD 

improves the prediction accuracy by producing the smallest error values in terms of 𝑅𝑆𝑆, 
𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, and 𝑀𝐴𝑃𝐸. 

 

Based on the numerical experiment results, the ELNET-EMD functions by selecting the necessary 

variables that have a significant effect on the response variable and improves the production 

accuracy despite the existence of white noise. 

 

5. Application 
In this section, we provide an empirical data analysis using the daily exchange rates of four 

countries against the US dollar (USD). 

 

5.1 Exchange Rate 
In this study, the proposed method contributes to the identification of the decomposed components 

via the EMD method of the multivariate original predictor variables, which exert a reflective effect 

on the response variable in case of multicollinearity among the decomposition components for 

enhancing the production accuracy. The daily close exchange rates of four countries against the 

USD, namely, Taiwan (TAW/USD), Malaysia (MYR/USD), Japan (JAP/USD), and China 

(CHN/USD), from 27/03/2015 to 25/10/2019, is used to evaluate the performance of the ELNET-

EMD method relative to other technical selecting regression methods depending on the real time 

series dataset. The number of observations is 1,196, and all datasets are collected from the Wall 

Street Journal database (https://www.wsj.com/). 

 

The response variable in this application is the daily close exchange rates of TAW/USD (Mean = 

31.0993934, Standard Error = 0.02953328, Skewness = 0.33513459), and the three predictor 

variables are the daily close exchange rates of MYR/USD (Mean = 4.128473077, Standard Error 

= 0.005606923, Skewness =  -0.555859832), JAP/USD (Mean = 112.0747492, Standard Error = 

0.158407035, Skewness =  0.457279359), and CHN/USD (Mean = 6.648520569, Standard Error 

= 0.007161266, Skewness = -0.184059875). The datasets are divided into two parts, where the first 

part from 27/03/2015 to 11/06/2018 of the data sets (70% of the total dataset) are used for training 

the model, and the remaining datasets are used to evaluate the performance criteria and called the 

test dataset. 

 

5.2 Application Results and Discussion 
Figure 4 presents the daily close exchange rates of the main predictor variables MYR/USD ( 𝑥1(𝑡)), 

JAP/USD (𝑥2(𝑡)), and CHN/USD (𝑥
3
(𝑡)), and the response variable y(𝑡) is TAW/USD. The figure 

illustrates the plots of original predictors and response signals. The structure of the signals shows 

different values over time and excludes straight lines, which indicates that the signals are 

nonstationary and nonlinear. 

 

https://www.wsj.com/
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Figure 4. The daily exchange rates of MYR/USD, JAP/USD, CHN/USD, and TAW/USD. 

 

 

Figure 5 shows the decomposing components using the EMD algorithm of the main predictor 

variables 𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡). Each one of these variables is decomposed into seven IMFs and 

one residual component. Besides, the first three components have high frequency and short 

wavelength. These physical properties vary among the components, where the frequency decreases 

with the increase in the wavelength when the increase in the number of components. 

 

Table 6 explains the values of the VIF test of multicollinearity between the decomposition 

components. The results show that several 𝑉𝐼𝐹𝑗,𝑘 values are greater than ten (𝑉𝐼𝐹𝑗,𝑘 > 10), such as 

𝑉𝐼𝐹1,7, 𝑉𝐼𝐹2,7, 𝑉𝐼𝐹2,8, and 𝑉𝐼𝐹3,7. This finding indicates that a high correlation exists among the 

decomposition components of the MYR, JAP, and CHN variables, which subsequently indicates 

that multicollinearity exists. 

 

Figure 6 shows the 10-CV and the coefficient estimation plots of the ELNET-EMD. The figures 

illustrate the number of decomposition components, which are selected in the final model by 

choosing the value of λ at the 𝑚𝑖𝑛𝑀 or 1se rule according to the CV plot. For the 𝑚𝑖𝑛𝑀 rule, 

twelve components from all decomposition components are selected into the final model, while for 

the 1𝑠𝑒 rule, only the  𝐶1,1 and  𝐶3,1components have the strongest effect on the response variable 

and that is why it is entered into the final model. 
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Figure 5. Decomposition of the main predictor variables  𝑥1(𝑡), 𝑥2(𝑡), and 𝑥3(𝑡) via EMD. 

 

 

 
Table 6. Variance inflation factors (VIF). 

 

𝑉𝐼𝐹1,1 𝑉𝐼𝐹1,2 𝑉𝐼𝐹1,3 𝑉𝐼𝐹1,4 𝑉𝐼𝐹1,5 𝑉𝐼𝐹1,6 𝑉𝐼𝐹1,7 𝑉𝐼𝐹1,8 𝑉𝐼𝐹2,1 𝑉𝐼𝐹2,2 𝑉𝐼𝐹2,3 𝑉𝐼𝐹2,4 

1.05 1.04 1.12 1.06 2.57 2.25 12.2 5.59 1.01 1.01 1.02 1.11 

𝑉𝐼𝐹2,5 𝑉𝐼𝐹2,6 𝑉𝐼𝐹2,7 𝑉𝐼𝐹2,8 𝑉𝐼𝐹3,1 𝑉𝐼𝐹3,2 𝑉𝐼𝐹3,3 𝑉𝐼𝐹3,4 𝑉𝐼𝐹3,5 𝑉𝐼𝐹3,6 𝑉𝐼𝐹3,7 𝑉𝐼𝐹1,8 

1.22    1.35   11.5 34.9  1.1 1.04    1.12    1.12    2.42    1.64   12.2    4.9 

*𝑗, 𝑘  is the 𝑘𝑡ℎ component of the original predictor 𝑗𝑡ℎ; 𝑗 = 1,2,3 
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Figure 6. 10- Cross-validation (10-CV) estimation and the coefficient estimation for ELNET-EMD. 

 

 

Table 7 illustrates the results of the 𝑅𝑆𝑆 values for comparing the ELNET-EMD method with the 

other technical methods at the values of lambda that are selected by CV. The ELNET-EMD model 

has the smallest 𝑅𝑆𝑆 value at 𝑚𝑖𝑛𝑀 rule (𝜆 = 0.040645 and 𝑅𝑆𝑆 = 299.444). In this case, the 

ELNET-EMD model at 𝑚𝑖𝑛𝑀 performs better than other methods in this study. 

 
Table 7. Residual sum of squares error (𝑅𝑆𝑆) values. 

 

Method Rule 𝜆 𝑅𝑆𝑆 

OLS-EMD   383.7779 12 

SR-EMD   311.0713 7 

SCAD-EMD  0.053576 303.3288 4 

MCP-EMD  0.070824 305.5657 6 

Ridge-EMD 
𝑚𝑖𝑛𝑀 0.231917 301.5496 2 

1𝑠𝑒 2.605181 324.7441 8 

Ad-LASSO-EMD 
𝑚𝑖𝑛𝑀 0.306543 302.3415 3 

1𝑠𝑒 3.137560 339.5930 11 

LASSO-EMD 
𝑚𝑖𝑛𝑀 0.056127 305.3062 5 

1𝑠𝑒 0.171404 336.0778 9 

ELNET-EMD α = 0.72 
𝑚𝑖𝑛𝑀 0.040645 299.4440 1 

1𝑠𝑒 0.238060 336.5113 10 

* 1-12 is the rank of the methods from minimum to maximum values 

 

 

Table 8 explains the estimation of the coefficients of the decomposition components. For the 

ELNET-EMD at 𝑚𝑖𝑛𝑀 rule compared with other regression methods used in the study, the 

coefficient estimation equal to twelve nonzero coefficients, where six components from Malaysia 

(𝐶1,1~ 𝐶1,4, 𝐶1,7, and 𝑅1), four components from Japan (𝐶2,1, 𝐶2,5, 𝐶2,6, and 𝑅2), and two 
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components from China (𝐶3,1, and 𝐶3,2) have varying levels of strong effects on the response 

variable. Thus, the ELNET-EMD method is more accurate in selecting non-zero coefficients than 

other regression methods when a high correlation exists among the decomposition components. 

Where the components that have high correlation like  𝐶1,7  and 𝑅2components are selected into the 

final model. 

 

 
Table 8. Coefficients estimation for the decomposition components. 

 

 
OLS-

EMD 

SR-

EMD 
SCAD-EMD MCP-EMD 

Ridge-

EMD 

𝑚𝑖𝑛𝑀 

Ad-LASSO-

EMD 

𝑚𝑖𝑛𝑀 

LASSO-

EMD 

𝑚𝑖𝑛𝑀 

ELNET-

EMD 
𝑚𝑖𝑛𝑀 

𝐵1,1 - 0.2884 - 0.2864 - 0.2937 - 0.2957 - 0.2375 - 0.2792 - 0.2432 - 0.2607 

𝐵1,2 - 0.1353 - 0.1367 - 0.1124 - 0.1149 - 0.1139 - 0.1160 - 0.0916 - 0.1119 

𝐵1,3 - 0.0544 - 0.0599 - 0.0047 0 - 0.0443 0 - 0.0005 - 0.0283 

𝐵1,4 - 0.0287 0 0 0 - 0.0277 0 0 - 0.0055 

𝐵1,5   0.0733 0 0 0   0.0226 0 0 0 

𝐵1,6 - 0.0028 0 0 0   0.0032 0 0 0 

𝐵1,7   0.2559 - 0.1718 0 0   0.0377 0 0   0.0010 

𝐵1,8   0.4306 0 0 0 - 0.0105 0 0 - 0.0096 

𝐵2,1 - 0.0538 - 0.0052 - 0.0015 0 - 0.0436 0 - 0.0003 - 0.0245 

𝐵2,2   0.0181 0 0 0   0.0124 0 0 0 

𝐵2,3 - 0.0288 0 0 0 - 0.0209 0 0 0 

𝐵2,4   0.0195 0 0 0   0.0189 0 0 0 

𝐵2,5   0.0737    0.0477 0 0   0.0439 0 0   0.0173 

𝐵2,6 - 0.0491 - 0.0552 0 0 - 0.0273 0 0 - 0.0094 

𝐵2,7 - 0.2544 - 0.1566 0 0 - 0.0050 0 0 0 

𝐵2,8   0.4909   0.1029   0.0011 0   0.0128 0 0   0.0151 

𝐵3,1 - 0.1718 - 0.1652 - 0.1399 - 0.1345 - 0.1440 - 0.1411 - 0.1159 - 0.1375 

𝐵3,2 - 0.0663 - 0.0663 - 0.0189 - 0.0013 - 0.0613 - 0.0189 - 0.0229 - 0.0448 

𝐵3,3 - 0.0247 0 0 0 - 0.0158 0 0 0 

𝐵3,4 - 0.0066 0 0 0 - 0.0012 0 0 0 

𝐵3,5 - 0.0782 0 0 0 - 0.0326 0 0 0 

𝐵3,6 - 0.0237 0 0 0 - 0.0226 0 0 0 

𝐵3,7 - 0.0146 0 0 0 - 0.0202 0 0 0 

𝐵3,8 - 0.0659 0 0 0 - 0.0120 0 0 0 

 

Table 9 illustrates the performance criteria of the prediction accuracy of the regression methods 

using RMSE, MAE, and 𝑀𝐴𝑃𝐸 in the application using a real time-series dataset. The results show 

that the ELNET-EMD at the 𝑚𝑖𝑛𝑀 rule has the smallest error value in the terms of 𝑅𝑀𝑆𝐸 and 

𝑀𝐴𝐸 terms, while for the 𝑀𝐴𝑃𝐸  achieved the fourth-order among the other methods. Therefore, 

the ELNET-EMD method selects decomposition components that have more significant effect on 

the response variables with high prediction accuracy. 

 
Table 9. Performance criteria. 

 

* 1-8 is the rank of the methods from minimum to maximum values 

Method 𝑅𝑀𝑆𝐸 𝑀𝐴𝐸 𝑀𝐴𝑃𝐸 

OLS-EMD 1.0339 8 0.7942 8 4.2962 8 

SR-EMD 0.9309 7 0.6906 7 2.5998 3 

SCAD-EMD 0.9192 4 0.6771 5 2.7485 7 

MCP-EMD 0.9226 6 0.6796 6 2.7453 6 

Ridge-EMD 𝑚𝑖𝑛𝑀 0.9165 2 0.6759 4 2.5771 2 

Ad-LASSO-EMD 𝑚𝑖𝑛𝑀 0.9177 3 0.6751 2 2.6828 5 

LASSO-EMD 𝑚𝑖𝑛𝑀 0.9222 5 0.6754 3 2.3970 1 

ELNET-EMD 𝑚𝑖𝑛𝑀 0.9133 1 0.6708 1 2.6308 4 
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6. Conclusions 
This study applied the ELNET-EMD method by using nonstationary and nonlinear time-series data. 

The method is used to study the effect of the IMFs and the residual component of multivariate 

predictor variables on the response variable and tackle the high correlation among the IMFs and 

residual component for ensuring accuracy and reliability of the selected fitting model. 

 

Numerical experiments and actual time-series dataset for the daily close exchange rates of MYR, 

JAP, CHN, and TAW are carried out. The ELNET-EMD method separately decomposes the multi-

predictors into a finite set of IMFs and one residual component via EMD. Thereafter, the 

decomposition components are selected, which have the most significance on the response variable 

and address the multicollinearity between the decomposition components using the ELNET 

regression. 

 

The results prove that the ELNET-EMD method is considerably more accurate than other 

regression methods. The ELNET-EMD method is highly capable of identifying the decomposition 

components that have the most significance on the response variable. Although the correlation 

between the decomposition components is high, the components have high correlation in/out the 

final model. The ELNET-EMD method selects the best fitting model that is free of multicollinearity 

and displays high prediction accuracy. 
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