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The adaptive LASSO regression and empirical mode
decomposition algorithm for enhancing modelling accuracy

Abdullah S. Al-Jawarneha and Mohd. Tahir Ismailb

aFaculty of Science, Department of Mathematics, Jerash University, Jerash, Jordan; bSchool of Mathematical
Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia

ABSTRACT
The first part of the Hilbert–Huang transformation is named the empirical
mode decomposition (EMD). Which employed to decompose the non-sta-
tionary and non-linear time series dataset into a finite set of orthogonal
decomposition components. These components have been used in several
studies as the new predictor variables to predict the behavior of the
response variables. Adaptive LASSO (AdLASSO) regression is a technical
penalized regression method used to determine the most relevant predic-
tors on the response variable with achieving the consistency in terms of
variable selection and ensuring that they are asymptotically normal. Hence,
the main objective of this study is to apply the proposed EMD-AdLASSO
method involving two cases of initial weights to identify the decomposed
components that exhibit the strongest effects to produce a consistent
model and to improve the prediction accuracy. The simulation study and
real dataset used the daily exchange rate dataset of three countries against
the US dollar are applied. The results showed that the proposed method
in the two cases of the initial weight outperformed other existing methods
by effectively identifying the decomposition components, with high predic-
tion accuracy. This is primarily observed in the case of using the ridge
regression method based on the EMD as the initial weight in the proposed
EMD-AdLASSO method.
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1. Introduction

Traditional decomposition methods assume that the time series dataset should be either station-
ary or linear before the analysis process. For example, Fourier decomposition (Titchmarsh 1948)
and wavelet decomposition (Chan 1995) methods. However, most real-life data appear as non-sta-
tionary and nonlinear time series datasets. Thus, the decomposition of non-stationary and nonlin-
ear time series are important issues that need to be considered in conducting an analysis.
Meanwhile, there is a lack of analytical methodologies that employed to deal with these time-
series datasets.

In 1998, Huang et al. became interested in the distorted non-stationary and nonlinear time-
series signals without moving from the time domain into the frequency domain, and the informa-
tion was maintained in the time domain. This led to a new technical method called the empirical
mode decomposition (EMD) to be proposed (Huang 2014). The EMD method does not require a
pre-condition for the time series dataset, unlike the traditional methods (Huang 2014). Currently,
the EMD has been widely used in various fields of science, including medicine (Masselot et al.
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2018), electronic engineering (Suvasini et al. 2015), civil and construction engineering (OBrien,
Malekjafarian, and Gonz�alez 2017), economics (Jaber, Ismail, and Altaher 2014), and environ-
mental science (Naik, Satapathy, and Dash 2018).

The practical principle of the EMD is it aims to separate the non-stationary and nonlinear sig-
nal into a finite set of orthogonal non-overlapping time scale components, namely, the intrinsic
mode functions and residual components (decomposition components) (Moore et al. 2018). Each
of the components is different in terms of its physical form (i.e., wavelength and frequency). It
includes information particular frequencies found within the original time series dataset (Qin
et al. 2016; Al-Jawarneh et al. 2020; Al-Jawarneh and Ismail 2021). As such, the decomposition
components can be used as new predictor variables to predict their effects and behaviors about
other response variables using suitable models. For instance, the ordinary least-squares (OLS)
regression and forward stepwise regression methods are applied based on the EMD method by
(Yang, Tsai, and Huang 2011), using combined stepwise regressions (SR) based on the EMD
method (Adarsh and Janga Reddy 2019; Zhao et al. 2018), the least absolute shrinkage and selec-
tion operator (LASSO) regression based on the EMD method (Qin et al. 2016; Masselot et al.
2018), the ridge regression (RR) based on the decomposition components via EMD method by
(Naik, Satapathy, and Dash 2018; Ali et al. 2019) and the Elastic-net regression based on the
EMD method by (Al-Jawarneh et al. 2020; Al-Jawarneh, Ismail, and Awajan 2021; Al-Jawarneh
and Ismail 2021).

The results obtained from the use of the SR method lacked reliability in selecting the optimal
model (Smith 2018). In contrast, the OLS estimate has a low prediction accuracy and face diffi-
culty in reducing the number of predictor variables. While the RR method (Hoerl and Kennard
1970) still cannot deal with the reduction of the predictor numbers, so that the unnecessary pre-
dictor variables will still exist in the final model. The LASSO method (Tibshirani 1996) is incon-
sistent for variable selection. That means the method does not have the oracle property (Fan and
Li 2001; Zou 2006).

The purpose of this study aims to identify the decomposed components that exhibit the most
substantial effects on the response variable and improve prediction accuracy. The unbiased
method, known as the adaptive LASSO (AdLASSO) regression (Zou 2006) method based on the
EMD algorithm is applied.

The organization of this article is as follows. Section 2 will present a description of the EMD
method, adaptive LASSO regression, and the proposed EMD-AdLASSO method involving two
cases for the initial adaptive weights. Section 3 will provide the simulation study and the daily
exchange rate time series dataset applied in this study. Section 4 will illustrate the analysis and
discussion of the results. Finally, a conclusion for the study is provided in Section 5.

2. Methodology

In this section, we discussed the used methods in detail. Firstly, the EMD method was selected to
deal with non-stationary and nonlinear predictors via the sifting process algorithm. Second, the
technical penalized least squares estimator known as the adaptive LASSO regression method will
be applied. Finally, the proposed EMD-AdLASSO method will be presented.

2.1. Empirical mode decomposition

The empirical mode decomposition (EMD) proposed by Huang et al., in 1998, EMD is a new
technique of the decompose method and represents the first part of the Hilbert–Huang transform
(Huang et al. 1998). The EMD aims to break the original signal x tð Þ which is a non-stationary
and nonlinear time series dataset into a finite set of nearly orthogonal decomposition compo-
nents, which keeps the time domain of the signal unchanged (Huang 2014). These decomposition
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components are called the intrinsic mode function (IMF) Ck tð Þ; k ¼ 1, 2, :::,K
� �

components and
one residual R tð Þ component represents the trend of x tð Þ (Niu and Wang 2014; Moore et al.
2018). The IMF’s components should satisfy the following conditions: (a) The numbers of local
extrema (i.e., maximum and minimum) and zero crossings must be equal or differ at most by
one, (b) The mean envelope among the upper and lower envelopes is equal to a zero value (Park,
Cho, and Oh 2013; Huang 2014).

The EMD decomposes x tð Þ using an iterative process which is called the sifting process (SP)
algorithm, which is described as the following algorithm (Huang 2014) and Figure 1.

Algorithm: SP Algorithm
Input: x tð Þ
Output: Ck tð Þ; k ¼ 1,K

� �
and R tð Þ components

i. Suppose that: x tð Þ ¼ R0 tð Þ; and q ¼ 1 and k ¼ 1.
ii. Determine the local extrema points.
iii. By the cubic spline curve, identify the envelope;

� Upper envelope uqðtÞ of the local maximum points.
� Lower envelope lq tð Þ of the local minimum points.

iv. Calculate the mean envelope: mqðtÞ ¼ ðuqðtÞ þ lqðtÞÞ=2.
v. Find the IMF components: hq tð Þ ¼ x tð Þ−mqðtÞ.
vi. Check, if the hq tð Þ satisfies the IMF conditions;

� Yes: Then hq tð Þ ¼ Ck tð Þ, save the output Ck tð Þ, and go to (vii).
� No: Let q ¼ qþ 1, repeat from (ii) until (vi)

vii. Calculate Rk tð Þ ¼ Rk−1 tð Þ−CkðtÞ.
viii. Check, if the Rk tð Þ is a monotonic function or satisfy the stoppage criterion of the

standard deviation SDh;

SDh ¼
XT
t¼0

hq−1 tð Þ−hq tð Þ� �2
hq−1

2 tð Þ ; 0:2� SDh � 0:3

� Yes: Save R tð Þ, and go to End.
� No: Let k ¼ kþ 1, repeat from (ii) until (viii).

End.

The original signal expressed as the linear combination of the k IMF components and one
residual R tð Þ as Equation (Huang 2014):

Figure 1. The tree graph of the Empirical mode decomposition.
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xðtÞ ¼
XK
k¼1

CkðtÞ þ RðtÞ (1)

2.2. Adaptive LASSO regression

The adaptive LASSO regression (AdLASSO) was proposed by Zou in 2006 to treat the oracle
property gap in the LASSO estimator using the weighting factors to control the bias (Zou 2006).
The AdLASSO method is a weighted version of the LASSO method (Dicker, Huang, and Lin
2013). The principle of the AdLASSO estimator aims to eliminate the bias in the LASSO estima-
tor using the weights to apply a different amount of shrinkage on the different coefficients. This
means the small coefficients are shrunk more severely, while the large coefficients are shrinking
less than the small coefficients. The consistency for variable selection with probability tending to
one and asymptotically normal estimates will be achieved (Huang, Ma, and Zhang 2008; Wang
et al. 2020; Pietrosanu et al. 2021). The AdLASSO estimator form is as follows:

b̂
AdLASSO ¼ argmin

b

1
2n

ky� ŷk22 þ APk, cðbÞ
� �

; APk, cðbÞ ¼ k
Xp
j¼1

xj bj

��� ��� (2)

where y½ �n�1
is the response vector variable and ŷ ¼ Xb̂; ŷ½ �n�1 is the estimated vector model,

and APk, cðbÞ is the AdLASSO penalty function, k > 0 is the tuning parameter, xj > 0; j ¼
1, 2, :::, p is the adaptive weights of the jth predictor which are defined as xj ¼ 1= b̂

init

j

��� ���c, where

b̂
init
j is an initial estimate of the regression coefficient bj obtained by the RR estimator xRR or

OLS estimator xOLS, and c > 0 is a positive constant (Wang et al. 2020). The optimal value of
(k, c) can be chosen by the K � fold cross-validation (CV) at c ¼ 0:5, 1, 2f g (Zou 2006).

Suppose that D ¼ fj : bj 6¼ 0g denotes the set of regression coefficients b which have an

important index effect, Dn ¼ j : b̂
AdLASSO
j 6¼ 0

n o
denotes the set of b that is estimated using the

AdLASSO method, kn=
ffiffiffi
n

p ! 0, and knnc�1 ! 1 as n ! 1, where kn varies with n: The

AdLASSO has an oracle property; that is, the estimator b̂
AdLASSO

must satisfy the follow-
ing properties:

i. Consistency for variable selection with probability tending to one:

lim
n!1 p Dn ¼ Dð Þ ¼ 1

ii. Asymptotic normality ffiffiffi
n

p ðb̂AdLASSO
D � bDÞd ! Nð0,RÞ

that is the b̂
AdLASSO
D is a consistent estimator for bD with normal limit and covariance

matrix varðbDÞ¼ R (Fan and Li 2001; Zou 2006).
Based on the numerical optimization algorithm method, which is called the coordinate descent

(COD) with the given k and c values, the AdLASSO estimates can be solved. The COD sub-prob-
lem is used to optimize each predictor. That solves exactly one predictor Xj while the rest of pre-
dictors Xf except the jth predictor will be fixed (Friedman, Hastie, and Tibshirani 2010). Then,
the problem can be written as follows:
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b̂
AdLASSO ¼ argmin

b

1
2n

ky � Xfbf � Xjbjk22 þ k
bj
��� ���
b̂
init

j

��� ���c þ k
Xp
f 6¼j

bf
��� ���
b̂
init

f

��� ���c
8><
>:

9>=
>; (3)

Suppose y� Xfbf is the partial residualrf , then Equation (3) becomes as follows:

b̂
AdLASSO ¼ argmin

b

1
2n

krf � Xjbjk22 þ k
bj

��� ���
b̂
init

j

��� ���c þ k
Xp
f 6¼j

bf

��� ���
b̂
init

f

��� ���c
8><
>:

9>=
>; (4)

Suppose that b̂j is a solution of bj, then the partial derivative of the Equation (4) with respect
to bj and equate the derivative to zero, that is:

�n�1Xt
jðrf � Xjb̂jÞ þ sign b̂j


 � k

b̂
init

j

��� ���c ¼ 0 (5)

Hence, n�1Xt
jXj ¼ 1 assuming that the predictor variables are standardized. The AdLASSO

coefficients are estimated using the following equation:

b̂j ¼ n�1Xt
j rf � sign b̂j


 � k

b̂
init

j

��� ���c (6)

By the soft-thresholding function, the AdLASSO estimator in the Equation (6) for each j ¼
1, 2, :::, p can be rewritten in the following form:

b̂j ¼ Sðn�1Xt
j rf , kxjÞ ¼

n�1Xt
j rf þ kxj if n�1Xt

j rf < kxj

0 if n�1Xt
j rf

��� ��� � kxj

n�1Xt
j rf � kxj if n�1Xt

j rf > kxj

,

8>><
>>: (7)

where Sðn�1Xt
j rf , kxjÞ represents the soft-thresholding function.

2.3. Proposed EMD-AdLASSO method

The proposed EMD-AdLASSO method was presented in two cases for the initial adaptive weights
as the EMD-OLS and the EMD-RR estimators. Next, the proposed method in the two cases,
namely EMD-AdLASSO.OLS and EMD-AdLASSO.RR, were applied for multiple original pre-
dictor variables xjðtÞ; j ¼ 1, 2, :::, p: The proposed methods were designed as follows:

1) EMD-AdLASSO.OLS method:

i. Via the EMD method, the original signals xjðtÞ is decomposed into a finite set of the IMF
components and one residual component for each separate j, it can be written as follows.

xjðtÞ ¼
XK
k¼1

Cj:kðtÞ þ RjðtÞ; j ¼ 1, 2, :::, p (8)

ii. Using all the decomposition components of the xj tð Þ in the first step, the new predictor
variables to predict the behavior of the response variableyðtÞ is as follows (Masselot et al.
2018):

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 5



yðtÞ ¼ C1:1ðtÞb1:1 þ C1:2ðtÞb1:2 þ :::þ R1ðtÞb1:Kþ1 þ :::

þ Cj:1ðtÞbj:1 þ Cj:2ðtÞbj:2 þ :::þ RjðtÞbj:Kþ1 þ eðtÞ

¼
Xp
j¼1

XK
k¼1

Cj:kðtÞbj:k
 !

þ RjðtÞbj:Kþ1 þ eðtÞ
(9)

iii. Computing the initial weights xEMD�OLS based on the initial estimators EMD-OLS at c ¼ 1 :

xEMD�OLS
j:k

¼ b̂
EMD�OLS

j:k

��� ����1
(10)

iv. Select the optimal tuning parameter value kopt by using the 10-fold CV method.

k
opt

¼ argmins CVksf g; CVks ¼
1
10

X10
k¼1

MSEk, ks ,xEMD�OLS ; s ¼ 1, S (11)

v. Apply the AdLASSO method:

b̂
AdLASSO:OLS
EMD ¼ argmin

b

1
2n

Xn
i¼1

yðtÞ �
Xp
j¼1

XK
k¼1

Cj:kðtÞbj:k
 !

� RjðtÞbj:Kþ1

0
@

1
A

2

þ OPkðbÞ

8><
>:

9>=
>;;

(12)

OPkðbÞ ¼ k
opt

Xp
j¼1

XKþ1

k¼1

xEMD�OLS
j:k

bj:k

��� ���
 !

2) EMD-AdLASSO.RR method:
Noted that steps (i) and (ii) are the same as in the previous EMD-LASSO.OLS method.
iii. Computing the initial weights xEMD�RR based on the initial estimators EMD-RR at c ¼ 1 :

xEMD�RR
j:k

¼ b̂
EMD�RR

j:k

��� ����1
(13)

iv. Select the optimal tuning parameter value kopt by using the 10-fold CV method.

k
opt

¼ argmins CVksf g; CVks ¼
1
10

X10
k¼1

MSEk, ks,xEMD�RR ; s ¼ 1, S (14)

v. Apply the AdLASSO method:

b̂
AdLASSO:RR
EMD ¼ argmin

b

1
2n

Xn
i¼1

yðtÞ �
Xp
j¼1

XK
k¼1

Cj:kðtÞbj:k
 !

� RjðtÞbj:Kþ1

0
@

1
A

2

þ RPkðbÞ

8><
>:

9>=
>;;

RPkðbÞ ¼ k
opt

Xp
j¼1

XKþ1

k¼1

xEMD�RR
j:k

bj:k

��� ���
 ! (15)

Finally, a comparison was made between the proposed methods with traditional methods,
namely, EMD-OLS, EMD-SR, EMD-RR, and EMD-LASSO. The comparison made was in terms
of the decomposed components selection and the use of the residual sum of squares (RSS), root
mean square error (RMSE), mean absolute error (MAE) and mean absolute scaled error (MASE)
as the criteria tests:
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RSS ¼
Xn
i¼1

ðyi ̂yiÞ2 MAE ¼ 1

n

Xn
i¼1

yiŷij j

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

ðyiŷiÞ2
s

MASE ¼ 1

n

Xn
i¼1

yiŷij j = 1

n1

Xn
i¼2

yiyi1j j
 !" #

3. Application

This section implemented the numerical simulation experiment and a real dataset application to
show the capacity of the proposed EMD-AdLASSO method. The analyses are made by R software
that uses an EMD package proposed by (Kim and Oh 2009) to decompose nonstationary and
nonlinear variables and the Glmnet package given by (Friedman, Hastie, and Tibshirani 2010) for
the AdLASSO estimators.

3.1. Simulation study

The sine function was used to assess the ability of the proposed methods. The datasets were gen-
erated for the non-stationary and nonlinear multivariate predictors, and the response variable
with the sample size n ¼ 250 and the time-domain is 0 � t � 9, by adding the white noise
error e � iid Nð0, 1Þ for the predictors (Qin et al. 2016; Al-Jawarneh et al. 2020; Al-Jawarneh,
Ismail, and Awajan 2021; Al-Jawarneh and Ismail 2021). 3, 000 replications of the sample size of
250 were modeled. The 10-fold CV was used to estimate the optimal tuning parameter k value.
The formulas of the function test as follows:

y tð Þ ¼ 0:5t þ sin ptð Þ þ sin 2ptð Þ þ sin 6ptð Þ

x1 tð Þ ¼ 0:8t þ sin 0:3ptð Þ þ sin 2ptð Þ þ sin 7ptð Þ þ sin 9ptð Þ þ e

x2 tð Þ ¼ 0:4t þ sin 0:2ptð Þ þ sin 6ptð Þ þ sin 5ptð Þ þ sin 12ptð Þ þ e

3.2. Daily exchange rate

The daily close exchange rates from 27=03=2015 to 25=10=2019 of three countries against the US
dollar (USD) were applied in this study. Those selected countries were Japan (JAP), China
(CHN), and Taiwan (TAW). All the datasets were collected from the Wall Street Journal database
(https://www.wsj.com/).

In this application, the daily exchange rates of the JAP and CHN represented the original pre-
dictor variables, whereas the daily exchange rates of TAW was the response variable. The datasets
were split into training and test datasets, where the training dataset represented the period

Table 1. Mean performance criteria.

Method RSS RMSE MAE MASE

EMD-OLS 77.06964 1.0126870 0.8623016 0.7951836
EMD-SR 74.60106 0.9964267 0.8525577 0.7860674
EMD-RR 73.86578 0.9919956 0.8625673 0.7950496
EMD-LASSO 73.08547 0.9866494 0.8561660 0.7891685
EMD-ALASSO.OLS 72.71307 0.9840945 0.8517993 0.7851780
EMD-ALASSO.RR 72.65568 0.9836985 0.8513228 0.7847640
�Bold line values are the proposed methods
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between 27=03=2015 to 11=6=2018 to estimate the fit models. In contrast, the remaining datasets
represented the test dataset for evaluating the performance criteria.

4. Results and discussion

The results of the analysis and discussion of the simulation experiment and actual time series
data of the daily close exchange rates are presented in this section.

4.1. Simulation results

Table 1 describes the average of the performance criteria in terms of RSS, RMSE, MAE, and
MASE for all the regression methods used in this study. The results show that the smallest error
value in RSS, RMSE, MAE, and MASE is achieved using the EMD-AdLASSO.RR method and the
second is achieved using the EMD-AdLASSO.OLS method. So, the proposed EMD-AdLASSO
method in the two cases of the initial weight has achieved the highest level of reliability with high
prediction accuracy in the simulation experiment.

4.2. Daily exchange rate results

Figure 2 illustrates the shape of the original primary predictors CHN, and JAP and the response
TAW variables. The shape of the predictor variables and the response variable shows neither a
constant value over time (i.e., the signal has a trend, changing levels, and seasonality rules that
depend on the time) or fluctuates around the zero lines. Such conditions are called nonstationary
and nonlinear conditions, respectively.

Figure 3 shows the decomposition components of the original predictors CHN and JAP via
the EMD method. The first predictor CHN decomposes into seven IMFs
C1:1,C1:2,C1:3,C1:4,C1:5,C1:6,C1:7f g and one residual R1 components. The second predictor JAP
has the same number of IMFs C2:1,C2:2,C2:3,C2:4,C2:5,C2:6,C2:7f g and one residual R2

Figure 2. Plots of the original signals CHN and JAP and TAW.

8 A. S. AL-JAWARNEH AND M. T. ISMAIL



components. Hence, each one of the decomposition components has differences in physical prop-
erties, particularly the wavelength and frequency compared with other decomposition compo-
nents. For illustration, the first decomposition component in the two original predictors C1:1 and

Figure 3. Decomposition of the original signals CHN and JAP via EMD.

COMMUNICATIONS IN STATISTICS - SIMULATION AND COMPUTATIONVR 9



Figure 4. 10-fold CV estimation of the MSE as the Log ðkÞ for the proposed method in two cases.

Table 2. Residual sum of squares error values.

Method kmin LogðkÞ RSS

EMD-OLS 341.8256
EMD-SR 314.4687
EMD-RR 0.193699 �1.641449871 321.6946
EMD-LASSO 0.007293 �4.920889247 316.1166
EMD-AdLASSO.OLS 0.060464 �2.805719371 313.1700
EMD-AdLASSO.RR 0.369095 �0.996702028 311.7273
�Bold lines are the proposed methods and the smallest RSS values

Table 3. Coefficients estimation for the predictor variables.

EMD-OLS EMD-SR EMD-RR EMD-LASSO EMD-AdLASSO.OLS EMD-AdLASSO.RR

b̂1:1 �0.2391 �0.2289 �0.1974 �0.2298 �0.2234 �0.2208
b̂1:2 �0.1129 �0.1119 �0.0925 �0.1051 �0.0948 �0.0895
b̂1:3 �0.0419 0 �0.0300 �0.0333 0 0
b̂1:4 �0.0237 0 �0.0175 �0.0143 0 0
b̂1:5 �0.0347 0 �0.0293 �0.0290 0 0
b̂1:6 0.0080 0 0.0118 0.0056 0 0
b̂1:7 �0.1014 0 �0.0345 �0.0310 �0.0352 0
b̂1:8 0.0101 0 �0.0005 0 0 0
b̂2:1 �0.0600 �0.0574 �0.0545 �0.0538 �0.0276 �0.0209
b̂2:2 0.0361 0 0.0266 0.0267 0 0
b̂2:3 �0.0326 0 �0.0278 �0.0264 0 0
b̂2:4 0.0533 0 0.0394 0.0396 0 0
b̂2:5 0.0539 0 0.0458 0.0490 0.0109 0.0061
b̂2:6 �0.0391 0 �0.0336 �0.0317 0 0
b̂2:7 0.0856 �0.0555 0.0373 0.0345 0.0186 0
b̂2:8 �0.0756 0 �0.0048 0 0 0
�b̂ j:k is the k component coefficient of the original predictor j
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C2:1 has a short wavelength and highest frequency, while the C1:7 and C2:7 components have a
long-wavelength and lower frequency.

Figure 4 shows the plots of the 10-fold CV of the AdLASSO.OLS, and AdLASSO.RR regression
methods based on the EMD components for selecting the optimal k: In each plot, the upper hori-
zontal line represents the numbers of non-zero coefficients for a given k: The vertical two dotted
lines from left to right represent the optimal selected value of k : The first vertical line is the loca-
tion of k value at the minimum mean squared error (MSE) called kmin, and the second vertical line
is the location of k value at the MSE is within one standard error from the minimum is called k1se:
Hence in Figure 4, the number of the non-zero coefficients will decrease as the value of the k
increases. For instance, in the AdLASSO.OLS method case, six non-zero coefficient components are
chosen in the final mode at kmin, while only one component at k1se will be chosen. However, in this
study, the value of kmin has been used to choose the non-zero coefficient components.

Table 2 displays the residual sum of squares error (RSS) values of the EMD-AdLASSO method
in the two cases, compared with the traditional methods. The results of the RSS values show that
the smallest value is achieved using EMD-AdLASSO.RR (kmin ¼ 0:369095; RSS ¼ 311:7273Þ: The
second smallest RSS value is achieved using the EMD- AdLASSO.OLS (kmin ¼ 0:060464; RSS ¼
313.17). The RSS value provides the best methods to select and support the fitting regression
models, where the proposed method in the two cases performs better with the smallest error than
the other previous methods used.

Table 3 explains the estimation of the non-zero coefficient of the decomposition components
that have the most effect on the response variable using the EMD-AdLASSO method in the two
cases for the initial weights, and the current methods are similar to those used in previous stud-
ies. In the EMD-AdLASSO.OLS method, the number of the coefficients that have been selected
equals to six non-zero coefficients which the C1:1,C1:2,C1:7,C2:1,C2:5 and C2:7, whereas in the
EMD-AdLASSO.RR method four the non-zero coefficients selected are C1:1,C1:2,C2:1, and C2:5

and they have the most effect on the response variables. Hence, the components in the EMD-
LASSO method, with the small coefficients, have larger weights and force to be equal to zero in
the proposed methods (like b̂1:6 in the EMD-LASSO non-zero coefficient, while b̂1:6 equal zero
in the proposed methods), while the large coefficients are shrinking less than the small coeffi-
cients depending on the initial weights.

Table 4 illustrates the performance criteria to measure the prediction accuracy of the proposed
method. A comparison is also made between the current methods using the criteria tests, which
are the RMSE, MAE, and MASE. The results show that EMD-AdLASSO.RR method provides the
smallest error value in terms of RMSE, MAE, and MASE, and the second smallest error achieved
by the EMD-AdLASSO.OLS method. The proposed EMD-AdLASSO method in the two cases
provides better results than the traditional methods, especially in the EMD-AdLASSO.RR method.

5. Conclusions

In this study, we propose the adaptive LASSO regression based on the EMD method (EMD-
AdLASSO) in two cases of the initial weight at EMD-OLS and EMD-RR that have been applied.

Table 4. Performance criteria.

Method kmin RMSE MAE MASE

EMD-OLS 0.9757871 0.7173476 0.6725151
EMD-SR 0.9359259 0.6764175 0.6341431
EMD-RR 0.193699 0.9466177 0.6853022 0.6424726
EMD-LASSO 0.007293 0.9383750 0.6796471 0.6371708
EMD-AdLASSO.OLS 0.060464 0.9339913 0.6737997 0.6316889
EMD-AdLASSO.RR 0.369095 0.9318375 0.6717694 0.6297855
�Bold lines are the proposed methods and the smallest values in term of performance criteria
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The novel proposes that a method is used to identify the relevance of the orthogonal decomposed
components via EMD, which have the most effect on the response variable to produce a consist-
ent model and to improve prediction accuracy.

The EMD algorithm has been used to decompose the non-stationary and non-linear original
time series predictor into a finite set of the IMF components and one residual component. In
contrast, the AdLASSO method, based on the OLS and RR as the initial weight, has been used
for selecting the best decomposition components, which are the most significant in terms of their
response variable.

The results of the simulation study and the close daily exchange rate dataset show that the
proposed EMD-AdLASSO method in the two cases has efficiently chosen the actual decompos-
ition components. These components have the strongest effects on the response variable with
high prediction accuracy. Especially, in the EMD-RR case as the initial weight, where the small
coefficient shrank more strictly. That leads to the reduction in the number of variables selection,
and lower prediction error compared to the EMD-OLS case.

In this study, the EMD-AdLASSO method process has many advantages comparing to trad-
itional methods: (1) The EMD algorithm makes the relationship between the variables more reli-
able in the sense of time and frequency domains simultaneously. (2) Each decomposition
components extracted via EMD has information concerning a particular frequency that is found
within the original predictor variable. (3) The AdLASSO regression effectively produced a consist-
ent model by identifying the decomposition components that exhibited the strongest effects
among the components. (4) The proposed EMD-AdLASSO method gives high prediction accur-
acy comparing to the traditional methods.
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