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Abstract
1
 

This paper presents decentralized mutual exclusion 

algorithm for dynamic Peer-to-Peer systems in 

which processes communicate by asynchronous 

passing messages and the resource has many 

replicas. In order to be practically useful, mutual 

exclusion protocol not only needs to be safe and 

live, but it also needs to be fair across clients. We 

propose a protocol to satisfy the fairness which 

organizes the replicas of the resource as a logical 

group and it always has a coordinator to keep the 

replicas consistent. The proposed protocol is based 

on the token approach. The proposed protocol 

presents solving of the mutual exclusion in 

distributed manner by maintaining the queue of 

requests kept in the replicas and requesting nodes 

with an efficient way that reduces the message 

overhead. We analytically prove the correctness of 

our algorithm and experimentally evaluate its 

scalability and efficiency by using simulations. 

Keywords: mutual exclusion, election, fairness, 

distributed algorithm, peer-to-peer, distributed 

systems. 

1. Introduction 

 The processes in Peer-to-Peer (P2P) systems share 

different types of recourses; the recourses can be either 

computational resources or data; it is necessary to avoid 

multiple simultaneous accesses to the resources 

mentioned above.  

The distributed mutual exclusion (DME) protocols 

manage the access to a shared resource by single process 

at any time in distributed environment; in general the 

process enters its critical section (CS) to achieve mutual 
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exclusion. It was first described and solved by Dijkstra in 

[1]. DME introduces some new requirements as 

summarized in [2-4]. 

 There are many solutions for DME in dynamic P2P 

systems. These solutions belong to the field of distributed 

hash table (DHT) routing, as in [5, 6]. These solutions 

have many disadvantages (e.g. single-point of failure, 

unfairness, and the high message overhead). 

A fairness condition for mutual exclusion in P2P systems 

called first-come-first-served (FCFS) is important for 

many systems (e.g. Banking systems, and ticket agent 

systems). In addition, their databases are generally 

replicated to enhance reliability or improve performance. 

A common requirement for replicated data is consistency. 

Informally, this means that when one copy is updated, we 

need to ensure that other copies are updated as well; 

otherwise the replicas will no longer be the same. These 

systems require consistency between the replicas of the 

databases all the time, and achievement of the fairness. 

The existing mutual exclusion protocols (e.g. [5, 6]) do 

not satisfy these requirements. After crashing of the 

majority of the replicas at the same time, they may grant 

to the first new request. In this case, clients access the 

resource without order and may cause the violation of the 

mutual exclusion requirement (i.e. fairness). 

We develop a new protocol in dynamic P2P systems in 

this paper in order to satisfy fairness, to achieve 

decentralization and reduce the message overhead. The 

basic idea is maintaining the queue of requests at all the 

requesting nodes and at all the replicas of the resource to 

achieve the decentralizing characteristics. We also 

propose a mechanism to address replica crashes and 

memory losses by electing a coordinator between replicas 

of specific resource to keep the consistency between 

them. After crashing, when any server re-enters the 

system, it must update its memory as the coordinator at 

the beginning; then it will be ready to give the grant for 

mailto:atefob@
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the requests. In addition, the coordinator is the only one 

that can give the authority to a new client in order to 

access the shared resources. Initially, the token is situated 

at the coordinator of replicas, then it is exchanged 

between the owners of shared resource through the 

release messages and at the moment when there are no 

requesters else, it will return again to the coordinator 

waiting any new requesting to access the shared resource. 

The developed protocol presents a competitive level of 

performance and achieves the requirements of DME for 

providing efficient and reliable access to shared 

resources. 

2. Related Literature  

There are two different approaches in distributed systems 

to solve the mutual exclusion problem as it is described in 

the classification in [2]. The first approach is called 

token-based mutual exclusion [e.g. 11, 12], and the 

second one is called permission-based [e.g. 7, 8, 9, 10].  

DME protocols of dynamic P2P systems tend to fall into 

two categories as detailed in the survey paper in [4]: they 

include the protocols in the method of DHT routing and 

the protocols in the method of semantic routing.  There 

are many algorithms in the field of DHT routing. 

Reference [5] was the first protocol for providing DME in 

dynamic P2P DHT systems, it is called Sigma. It is 

implemented inside a P2P DHT and adopts queuing and 

cooperation between clients and replicas to enforce a 

quorum consensus. It has a high message overhead, and a 

central-point of failure and increased load point on a few 

nodes (i.e. replicas), when we assume that the number of 

requesters is very large. In addition, its service policy 

does not guarantee FCFS - this case happens when the 

replica fails. It returns to the system with fresh memory, 

and it may vote for any new requester since client 

requests can take arbitrarily long to arrive. Thus, Sigma 

can be best described as quasi -FCFS. The second, End-

to-End (E2E) mutual exclusion protocol maintains the 

queue of requests at first N waiting nodes to use a 

particular resource, as in [6]. It relies on N nodes to 

maintain the queue of requests for the resource, leading to 

a less fault tolerant system due to a central point of failure 

and increased load on a few set of nodes because the 

system is dynamic and we can’t expect the number of 

requester at the moment. E2E protocol also doesn’t 

guarantee the service rule “first come first served” 

(FCFS) (i.e. fairness) as in Sigma. E2E protocol doesn’t 

present more improvement in the message overhead than 

the others. The last protocol is Non-End-to-End 

(NonE2E) protocol, as in [6], the fundamental idea 

behind this protocol is to maintain a partial queue of 

requests at all the nodes in the quorum set rather than a 

complete queue at only the accessing node. Information 

maintained in these partial queues can be consolidated 

when the current node exits the critical section, to 

determine the next node in line to use this resource. It has 

disadvantages as others but it is more distributed. 

In recent years, the token based fair K mutual exclusion 

algorithm for p2p systems using a single forest tree 

structure was proposed in ref. [13]. It achieves 

improvement in fairness characteristics by minimizing the 

speed of access time. The algorithm for solving DME 

problem is introduced in Ref. [14]. It is based on the 

multiple tokens ring approach. Each competing process 

generates a unique token and sends it as request to enter 

the critical section that travels along the ring. The process 

enters the critical section if it gets back its own token. 

3. System Model  

The protocol presented in this paper is based on a system 

model that represents dynamic P2P DHT systems. The 

basic entity in the system is called node (peer). We 

assume that each node has a unique nodeId. The nodes 

are connected over a P2P DHT that allows any node to 

route a message to any other. The number of nodes 

(clients) is unpredictable and may be very large. There 

may be high churn in the system – nodes may enter and 

leave the system anytime. 

The shared resource corresponds to a set of nodes (i.e. 

replicas), they may be virtual (e.g. a file or a 

computational resource). We consider one from the active 

replicas as a coordinator, in order to keep the consistency 

between the replicas. The replicas for a resource are 

always available, but their internal states may be 

randomly reset due to a crash-recovery failure. They 

rejoin the network with the same previous number 

nodeId, and they recover refresh their memory according 

to the memory of the coordinator. 

4. Proposed Protocol 

The existing protocols present a good solution for the 

mutual exclusion problem in P2P systems, but they don’t 

fully satisfy many requirements of this domain. The main 

disadvantage is single-point of failure. We will be able to 

achieve better distribution characteristics in proposed 

protocol by maintaining a complete queue of future 

requests at all the requesting nodes and at the replicas of 

the resource rather than at the current owner of the 

resource (or at the first N nodes in the queue) as it is in 

the case of E2E protocol [5], or complete queue at 

replicas of resource as it is in the case of Sigma protocol 

[6]. Another disadvantage is that the service policies are 

not FCFS at all the existing protocols. We can call them 

quasi-FCFS in case of failure of a replica. We can make 

the service policy be FCFS by specifying the responding 

to a new request by the coordinator. Message overhead 

will be lower than in other protocols because the protocol 

uses less number of operations than the existing 

protocols. As an example, the response message is from 

the coordinator of replicas instead of N messages from 

the replicas as in exiting protocols. The proposed mutual 

exclusion protocol is presented in fig. 1.  In the following 

subsections, we will explain the proposed protocol in 

details. 
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4.1. Basis of the new protocol 

The proposed protocol is based on message passing 

between the requesting nodes and the replicas. The 

replicas cooperate with the coordinator to achieve fair 

responding of the requests. The replicas of the resource 

are organized as a group. The group always has one 

replica that has been “elected” to serve as the central 

arbitrator (i.e. coordinator) to keep the integrity between 

the replicas of the resource and response on the new 

requests. Every replica has identifiers: Coordinator, and 

Tcoor to assign the current coordinator and its Start_Time. 

Initially, the first created replica will be the coordinator. 

When a replica receives an incoming message from the 

requesting nodes (e.g. REQUEST, RELEASE) or 

RECOVER messages from other replica, the first course 

of action  is to determine if it is the coordinator or not. If 

replica is the coordinator, it sends the suitable answer to 

source of message (e.g. RESPONSE, UPDATE). On the 

other hand, if the replica finds that the coordinator is not 

active, it begins the election operation; otherwise, it just 

passes the message to coordinator. 

The coordinator election 
We proposed a simple and efficient algorithm to elect the 

next coordinator. It consists of appointing a replica- 

coordinator from an initial configuration in which all 

replicas are in the same state, that is, all are candidates 

and can become a coordinator. When any replica 

discovers that the current coordinator failed, it sends the 

message IAMCOORDINATOR to all active replicas. 

When the other replicas receive the message it simply 

appoints the new coordinator. The algorithm solves the 

problem of concurrent issuing electing using more than 

one replica by assigning the last one according to its 

timestamp. We use timing as proposed by Lamport in 

[15]. Fig.1 explains pseudo-code of the election 

operation. 

Recovering the memory 
After crashing, when the replica re-enters the system it 

in the beginning sends the message “RECOVER” to all 
active replicas. When the coordinator receives the 
message, it directly sends UPDATE message to the new 
replica. But if any other replicas receive the message, 
they firstly check if the coordinator is active or not. If the 
coordinator is not active, the replica must begin 
ELECTION operation in order to find a new coordinator. 
Then the replica completes the recover operation; it just 
passes the message to the coordinator, because just the 
coordinator can response to “RECOVER” message by 
sending UPDATE message to the source of the message. 
The recover operation is explained in fig.1. 

Client side pseudo-code: 

Timestamp=GETTIMESTAMP();//state variable saves  initial node’s 

clock. 

//requsting: 

incrementTimeStamp(); 

for each ri in replicas r 

 Send (REQUEST,timestamp) to ri  ; 

// releasing: 

IncrementTimeStamp(); 

for each ri in replicas r 
 Send (RELEASE,timestamp) to ri  ; 

for each Ci in Queue q 

 Send (RELEASE,timestamp) to Ci  ; 

onDeliver(from,msg){ 

switch msg.type is 

   RESPONSE: 

        if (msg.resource_avialabe) enterCriticalSection();  

        else {queue=msg.queue; 

queue[R].insert(myId,msg.timestamp);} 

   RELEASE: 

        unLockResource(R); 

        owner[R]=queue[R].removeFirst(); 

        if (owner[R]== myId) enterCriticalSection(); 

        if(owner[R]!=nill) lockResource(R); 

   ADDREQUEST: 

        Queue[R].insert(msg.sourc1e,msg.timestamp); 

   PING: send(msg.from,myId) 

} 

Replica side pseudo-code: 

Coordinator, Tcoor;   //state variables used in all replicas of resource. 

Periodically: 

 Send (PING) to Coordinator; 

 Wait periodOfTime(); 

Active(Id){ 

 Send (PING) to  Id; 

Wait(periodTime) 

If  receive ok Return true; Else return false;} 

Updating(){ 

for all active ri in replicas r 

 Send (RECOVER,timestamp) to ri  ;} 

Election(){ 
  For all active ri in replicas r 

Send (IAMCOORDINATOR, timestamp) to ri ;} 

onDeliver(from,msg){ 

     switch. Msg.type is 

        IAMCOORDINATOR: 
If (msg.timeStamp> Tcoor ){ 

 Coordinator=messege.from; 

 Tcoor =message.timeStamp;} 

        RECOVER:// rebuild memory 

         If ( received (msg) break; 

         If (msg.from==Coordinator || !active (Coordinator))  

 Election();//current coordinator failed 

    If (myId==Coordinator) send(UPDATE) to message.from; 

    Else  send (RECOVER, message.from) to Coordinator;  

       PING: send (msg.from,Ok); 

       REQUEST: 

         if (received (msg) break; 

           if(myId==Coordinator){ send(RESPONSE) to msg.from; 

           if (!available(resource)){ 

              for each ri in replicas r 

 Send (ADDREQUEST,msg.timestamp) to ri  ; 

              for each Ci in Queue q 

 Send (ADDREQUEST,msg.timestamp) to Ci  ;} 

          } 

          else if (active(Coordinator))   Send (REQUEST) to Coordinator; 

             else{ Election(); 

        Send (REQUEST) to Coordinator; 

            }} 

Fig 1. The proposed mutual exclusion protocol   

The requesting operation 
Any node wanting to request a resource does so by 

issuing its request to the group of replicas. The set of 

responsible replicas for a given resource can be found 
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using the Peer-to-Peer Replica Location Services (P-

RLS), as in [16]. The coordinator listens to such requests, 

processes and responds to them appropriately. Only the 

coordinator makes a decision regarding the resource 

request, it sends the responding message to requester; the 

message must contain the queue and the current owner of 

critical section. In addition, it sends ADDREQUEST 

message to all requesters that are waiting in the queue and 

to the entire group of replicas. The requesting node, upon 

receipt of this response, enters the critical section if it has 

been determined by the coordinator that the resource is 

available (i.e. the resource is free and queue is empty). 

All nodes (other than the node that has been granted 

access to the resource) simply mark the resource as “in 

use” and wait when the node exits the critical section to 

broadcast a release message before attempting to request 

the resource again.  The operations of the protocol are 

described in details below: 

1. Node A, wishing to enter the critical section, sends a 

REQUEST to the group of replicas requesting the use 

of resource R. 

2. Node Q, which is currently acting as the coordinator 

for the group of replicas, receives the request for 

resource R from Node A. Node Q determines that 

resource R is available and locks resource R for Node 

A. At the same time, Node B issues a request for 

resource R as well. Before dealing with the next 

incoming message (which is Node B’s request for 

resource R), Node Q sends its response (i.e. 

ADDREQUEST) to the requesters and to other 

replicas regarding the status of resource R (i.e. the 

response message contains status of resource, and 

queue of requests). A complete queue of requests is 

maintained at all requesters and replicas. 

3. Node “A” receives the response from the coordinator 

and notices that the coordinator has granted access to 

resource R for Node “A“ (i.e. queue of requests is 

empty and the resource is available). Node “A” enters 

the critical section and begins to use resource R. At 

the same time, Node B also receives the response and 

sees that resource R is used by Node “A”. It marks 

resource R as “in use” and enters the request into its 

queue. 

4. Upon finishing its work in the critical section, Node 

“A” issues a RELEASE message to the entire queue 

of requests and coordinator, indicating that it is done 

using the critical section. All nodes, including Node 

“B”, mark resource R as being available again. Node 

“B” is now free to issue a request for resource R. 

5. Steps 1-4 are repeated as nodes wish to access the 

critical section of the system. 

4.2. The node’s internal state 

The node’s internal state information includes its myId, 

the owner of the resource (i.e. Owner), the variable 

OwnerT , which stores the timestamp of the request; the list 

Queue, which stores the time stamped order of waiting 

clients (requesters). We use Lamport’s logical clock to 

generate timestamp, as in [15]. The information in the 

clients and replicas is consistent because the protocol 

uses the Coordinator to coordinate between them. 

4.3. Types of messages 

The communication between the requesting nodes and 

replicas of the resource is done by the following types of 

messages: 

1. Message type of REQUEST. It is sent by a client to 

replicas. If the message is received by the coordinator, 

the coordinator responds to the message by sending 

RESPONSE message with the status of the resource. If 

the resource is free, the coordinator locks the resource 

and informs the other replicas. But if the resource is 

busy, the coordinator adds the request to waiting 

queue and also sends ADDREQUEST message to all 

replicas and the nodes which have requests in queue. 

When any replica receives a REQUEST message, it 

pings the coordinator if it is active or not. If the 

coordinator is active  the replica  passes the request to 

it, else the current replica does the election. 

2.  Message type of RESPONSE. It is received by the 

requesting node from the coordinator. The message   

contains the status of resource, the queue of requests. 

As a result, a new node just waits until receiving 

RELEASE (token) message from previous owner. It 

may directly enter CS if the resource was unlocked. 

3. Message type of ADDREQUEST. When a node 

receives this type of message, it adds the request into 

the queue, but if the queue is empty and the resource 

is free, the requester will be directly the owner.  

4.  Message type of RELEASE. It is routed from the 

current owner of the resource to waiting nodes in the 

queue. If the current client is the owner, it succeeds 

and gets the permission to enter CS directly. Someone 

else does win but not this element. This element does 

nothing because it knows it has already been 

registered in the queue. It will enter later and now it is 

just waiting. 

4.4. Failure Handling   

The proposed protocol works under failure-free 

environments. Any node in the system may crash and the 

nodes communicate via messages across unreliable 

channels. In the following, we will explain how the 

protocol may solve the different types of failures:  

1. Failure of node currently presented in critical section. 

This case is solved by applying the principle leasing, 

as in [12]: the client is granted permission to enter CS 

for a specific time. When the lease expires, the next 

requester in queue will get the permission. The node 

can estimate the waiting time in queue in advance (i.e. 
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forecasting waiting time csw tlt  , where l is  the 

number of nodes in queue, cst - time in critical 

section) 

2. Failure of requester or replica during different 

communications. This failure is detected by the 

“PING/ACK” mechanism between the sender and 

receiver.   

3. The unreliable communication channel between nodes 

of the system will cause similar problems as well. The 

lost messages in all protocols are detected using a 

“PING/ACK” scheme, with constant overhead. 

4. Failure of the coordinator discovered by any other 

replica when the replica needs to connect with it for 

updating memory or passing the requesting messages. 

4.5. Correctness of the Proposed Protocol 

Correctness of P2P DME protocols can be guaranteed if 

the requirements of safety, liveness, and ordering 

(fairness) are upheld, that is established through the 

following lemmas. 

Lemma 1. The proposed protocol ensures that node p 

can enter CS, if it satisfies one of the following cases: 

a. If it received the authority from the coordinator by 

the RESPONSE message. 

b. If it received the RELEASE “token” message, and it 

requested at the front of the queue (i.e. p=q[1]) 

where q is queue of waiting requests. 

Proof a: this case happens when a new client requests to 

enter CS, and if CS is free. At the beginning, the client 

doesn’t have the queue of requests, so, as the responses 

arrive at client, it gradually forms the idea about its place 

in race. The coordinator answers the requester by sending 

RESPONSE message that contains the queue of waiting 

requesters and/or state of resource if it is available or not. 

If resource is available, then the client will be the owner 

and it can enter CS, else the client will wait and it will use 

CS according to case b.  

Proof b: in this case, the client p has already got the 

queue of request and its request is already waiting its turn 

in the queue q, which is ordered according to time-stamp. 

After the RELEASE “token” message is received, the 

first node in the queue q is granted to access the CS and 

others just wait. So, if the node p is at the front of q (i.e. 

p=q(1)), it will be the new winner to access CS.  

Lemma 2. The new protocol ensures mutual exclusion. 

Proof 2:  the replicas and requesting nodes of the 

resource iR  maintain a complete waiting queue ordered 

with time-stamp. Only the first element in queue can enter 

CS (see Lemma 1.b), and when it exits the critical 

section, it sends a release message to waiting clients in 

line, so the following requester can enter CS. Hence the 

lemma follows. For the new client, it may enter CS if it 

receives authority from the coordinator of replicas (see 

Lemma 1.a).  

Lemma 3. The protocol is deadlock-free. 

Proof 3: Deadlocks are avoided by using “ping/ack” 

mechanism and the principle of leasing. 

Lemma 4. The protocol is starvation-free. 

Proof 4: a node cannot wait indefinitely long because the 

requests are ordered by timestamp and all the requesting 

nodes and replicas maintain the requesting queue. Only 

the coordinator of replicas can give grant to enter CS. 

Theorem 1. The new protocol is correct. 

Proof theorem 1: Follows directly from Lemmas 2 – 4. 

5. Experimental Results 

The proposed and the existing protocols have been 

implemented over the FreePastry [17] implementation. 

The test-bench code starts off by creating a set of nodes, 

arranged according to the Pastry network topology. The 

simulation then runs for a certain number of rounds and 

derives the experimental results by over ten such runs in 

average. In the simulation, the concept of a round is 

introduced in order to describe the amount of work done 

by the nodes in the network, which includes a certain 

number of requests for resources being issued by a set of 

randomly chosen nodes. Also in each round, a node 

randomly releases 50% of its held resources.  

5.1. Scalability 

The main goal of the proposed protocol was to come up 

with an efficient and scalable method for achieving DME. 

Fig.2 presents a comparison of the proposed protocol 

with exiting protocols. Even though the plots are linear 

with respect to the number of nodes, the proposed 

protocol requires about 2 times fewer messages than the 

E2E protocol in average. The number of resources, 

replicas and requests per round are held constant at 65, 

10, and 20 respectively; the number of rounds is 20.  

5.2. High Churn Rate 

Rate of churn is defined as the sum of nodes that are in 

transition (i.e., either leaving or joining the system per 

round). In our simulation with a number of nodes =2000, 

n/2 randomly chosen nodes are failed and n/2 new nodes 

are added to the system, where n is the desired churn rate. 

Requesters are not churned in our experiments. Fig. 3 

shows the effect of increasing the rate of churn from 0 to 

1000 on the overall message overhead. The new protocol 

experience is a linear increase in message overhead when 

the rate of churn increases. 

6. Conclusion 

In this work, we have proposed a new protocol for 

achieving DME in a P2P system in order to satisfy 

fairness and decentralization, in addition, to reduce the 

message overhead. We have presented a novel method 

which uses a coordinator between replicas of the resource 

to keep the consistency between them in order to satisfy 

the requirement “fairness”. The protocol also presents a 

way for local decision-making. It is able to keep the load 

on the replicas relatively low even in the presence of a 

growing network and high churn rates. The protocol can 
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be easily configured to run on any DHT; and 

consequently provide a truly generalized solution for the 

addressed problem.  
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Fig 2.Comparison between the protocols: scalability, 

message overhead 
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Fig 3.Effect of Churn on message overhead 
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