
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/305968845

Decentralized and Fair Mutual Exclusion Protocol in Peer-to-Peer Systems

Conference Paper · January 2008

CITATION

1
READS

416

1 author:

Some of the authors of this publication are also working on these related projects:

Cloud computing View project

Approach for Intrusion Detection Using Simulated Annealing Algorithm Combined with Hopfield Neural Network View project

Atef Ahmed Obeidat

Al Balqa Applied University

24 PUBLICATIONS 123 CITATIONS

SEE PROFILE

All content following this page was uploaded by Atef Ahmed Obeidat on 12 July 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/305968845_Decentralized_and_Fair_Mutual_Exclusion_Protocol_in_Peer-to-Peer_Systems?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/305968845_Decentralized_and_Fair_Mutual_Exclusion_Protocol_in_Peer-to-Peer_Systems?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Cloud-computing-29?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Approach-for-Intrusion-Detection-Using-Simulated-Annealing-Algorithm-Combined-with-Hopfield-Neural-Network?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atef-Obeidat?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atef-Obeidat?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atef-Obeidat?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Atef-Obeidat?enrichId=rgreq-255ce0291b3d4846a8ff46cd971923a4-XXX&enrichSource=Y292ZXJQYWdlOzMwNTk2ODg0NTtBUzo1MTUyMjYwMDY2MzQ0OTZAMTQ5OTg1MDg2MDcxOA%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Workshop on Computer Science and Information Technologies CSIT’2008, Antalya, Turkey, 2008

1

Decentralized and Fair Mutual Exclusion Protocol in Peer-to-

Peer Systems

Atef Ahmed Obeidat

Department of computer science

Novosibirsk State Technical University

Novosibirsk, Russia

e-mail: atefob@hotmail.com

Vasily Vasiliyevich Gubarev

Department of computer science

Novosibirsk State Technical University

Novosibirsk, Russia

e-mail: gubarev@vt.cs.nstu.ru

Ali Ahmad Al-yousef

Department of Computer Science

Huson College University

Huson, Jordan

e-mail: alimalkawi @yahoo.com

Abstract
1

This paper presents decentralized mutual exclusion

algorithm for dynamic Peer-to-Peer systems in

which processes communicate by asynchronous

passing messages and the resource has many

replicas. In order to be practically useful, mutual

exclusion protocol not only needs to be safe and

live, but it also needs to be fair across clients. We

propose a protocol to satisfy the fairness which

organizes the replicas of the resource as a logical

group and it always has a coordinator to keep the

replicas consistent. The proposed protocol is based

on the token approach. The proposed protocol

presents solving of the mutual exclusion in

distributed manner by maintaining the queue of

requests kept in the replicas and requesting nodes

with an efficient way that reduces the message

overhead. We analytically prove the correctness of

our algorithm and experimentally evaluate its

scalability and efficiency by using simulations.

Keywords: mutual exclusion, election, fairness,

distributed algorithm, peer-to-peer, distributed

systems.

1. Introduction

 The processes in Peer-to-Peer (P2P) systems share

different types of recourses; the recourses can be either

computational resources or data; it is necessary to avoid

multiple simultaneous accesses to the resources

mentioned above.

The distributed mutual exclusion (DME) protocols

manage the access to a shared resource by single process

at any time in distributed environment; in general the

process enters its critical section (CS) to achieve mutual

Proceedings of the 10
th

 International Workshop on

Computer Science and Information Technologies

CSIT’2008, Antalya, Turkey, 2008

exclusion. It was first described and solved by Dijkstra in

[1]. DME introduces some new requirements as

summarized in [2-4].

 There are many solutions for DME in dynamic P2P

systems. These solutions belong to the field of distributed

hash table (DHT) routing, as in [5, 6]. These solutions

have many disadvantages (e.g. single-point of failure,

unfairness, and the high message overhead).

A fairness condition for mutual exclusion in P2P systems

called first-come-first-served (FCFS) is important for

many systems (e.g. Banking systems, and ticket agent

systems). In addition, their databases are generally

replicated to enhance reliability or improve performance.

A common requirement for replicated data is consistency.

Informally, this means that when one copy is updated, we

need to ensure that other copies are updated as well;

otherwise the replicas will no longer be the same. These

systems require consistency between the replicas of the

databases all the time, and achievement of the fairness.

The existing mutual exclusion protocols (e.g. [5, 6]) do

not satisfy these requirements. After crashing of the

majority of the replicas at the same time, they may grant

to the first new request. In this case, clients access the

resource without order and may cause the violation of the

mutual exclusion requirement (i.e. fairness).

We develop a new protocol in dynamic P2P systems in

this paper in order to satisfy fairness, to achieve

decentralization and reduce the message overhead. The

basic idea is maintaining the queue of requests at all the

requesting nodes and at all the replicas of the resource to

achieve the decentralizing characteristics. We also

propose a mechanism to address replica crashes and

memory losses by electing a coordinator between replicas

of specific resource to keep the consistency between

them. After crashing, when any server re-enters the

system, it must update its memory as the coordinator at

the beginning; then it will be ready to give the grant for

mailto:atefob@
mailto:gubarev@vt.cs.nstu.ru

Decentralized and Fair Mutual Exclusion Protocol in Peer-to-Peer Systems

2

the requests. In addition, the coordinator is the only one

that can give the authority to a new client in order to

access the shared resources. Initially, the token is situated

at the coordinator of replicas, then it is exchanged

between the owners of shared resource through the

release messages and at the moment when there are no

requesters else, it will return again to the coordinator

waiting any new requesting to access the shared resource.

The developed protocol presents a competitive level of

performance and achieves the requirements of DME for

providing efficient and reliable access to shared

resources.

2. Related Literature

There are two different approaches in distributed systems

to solve the mutual exclusion problem as it is described in

the classification in [2]. The first approach is called

token-based mutual exclusion [e.g. 11, 12], and the

second one is called permission-based [e.g. 7, 8, 9, 10].

DME protocols of dynamic P2P systems tend to fall into

two categories as detailed in the survey paper in [4]: they

include the protocols in the method of DHT routing and

the protocols in the method of semantic routing. There

are many algorithms in the field of DHT routing.

Reference [5] was the first protocol for providing DME in

dynamic P2P DHT systems, it is called Sigma. It is

implemented inside a P2P DHT and adopts queuing and

cooperation between clients and replicas to enforce a

quorum consensus. It has a high message overhead, and a

central-point of failure and increased load point on a few

nodes (i.e. replicas), when we assume that the number of

requesters is very large. In addition, its service policy

does not guarantee FCFS - this case happens when the

replica fails. It returns to the system with fresh memory,

and it may vote for any new requester since client

requests can take arbitrarily long to arrive. Thus, Sigma

can be best described as quasi -FCFS. The second, End-

to-End (E2E) mutual exclusion protocol maintains the

queue of requests at first N waiting nodes to use a

particular resource, as in [6]. It relies on N nodes to

maintain the queue of requests for the resource, leading to

a less fault tolerant system due to a central point of failure

and increased load on a few set of nodes because the

system is dynamic and we can’t expect the number of

requester at the moment. E2E protocol also doesn’t

guarantee the service rule “first come first served”

(FCFS) (i.e. fairness) as in Sigma. E2E protocol doesn’t

present more improvement in the message overhead than

the others. The last protocol is Non-End-to-End

(NonE2E) protocol, as in [6], the fundamental idea

behind this protocol is to maintain a partial queue of

requests at all the nodes in the quorum set rather than a

complete queue at only the accessing node. Information

maintained in these partial queues can be consolidated

when the current node exits the critical section, to

determine the next node in line to use this resource. It has

disadvantages as others but it is more distributed.

In recent years, the token based fair K mutual exclusion

algorithm for p2p systems using a single forest tree

structure was proposed in ref. [13]. It achieves

improvement in fairness characteristics by minimizing the

speed of access time. The algorithm for solving DME

problem is introduced in Ref. [14]. It is based on the

multiple tokens ring approach. Each competing process

generates a unique token and sends it as request to enter

the critical section that travels along the ring. The process

enters the critical section if it gets back its own token.

3. System Model

The protocol presented in this paper is based on a system

model that represents dynamic P2P DHT systems. The

basic entity in the system is called node (peer). We

assume that each node has a unique nodeId. The nodes

are connected over a P2P DHT that allows any node to

route a message to any other. The number of nodes

(clients) is unpredictable and may be very large. There

may be high churn in the system – nodes may enter and

leave the system anytime.

The shared resource corresponds to a set of nodes (i.e.

replicas), they may be virtual (e.g. a file or a

computational resource). We consider one from the active

replicas as a coordinator, in order to keep the consistency

between the replicas. The replicas for a resource are

always available, but their internal states may be

randomly reset due to a crash-recovery failure. They

rejoin the network with the same previous number

nodeId, and they recover refresh their memory according

to the memory of the coordinator.

4. Proposed Protocol

The existing protocols present a good solution for the

mutual exclusion problem in P2P systems, but they don’t

fully satisfy many requirements of this domain. The main

disadvantage is single-point of failure. We will be able to

achieve better distribution characteristics in proposed

protocol by maintaining a complete queue of future

requests at all the requesting nodes and at the replicas of

the resource rather than at the current owner of the

resource (or at the first N nodes in the queue) as it is in

the case of E2E protocol [5], or complete queue at

replicas of resource as it is in the case of Sigma protocol

[6]. Another disadvantage is that the service policies are

not FCFS at all the existing protocols. We can call them

quasi-FCFS in case of failure of a replica. We can make

the service policy be FCFS by specifying the responding

to a new request by the coordinator. Message overhead

will be lower than in other protocols because the protocol

uses less number of operations than the existing

protocols. As an example, the response message is from

the coordinator of replicas instead of N messages from

the replicas as in exiting protocols. The proposed mutual

exclusion protocol is presented in fig. 1. In the following

subsections, we will explain the proposed protocol in

details.

Workshop on Computer Science and Information Technologies CSIT’2008, Antalya, Turkey, 2008

3

4.1. Basis of the new protocol

The proposed protocol is based on message passing

between the requesting nodes and the replicas. The

replicas cooperate with the coordinator to achieve fair

responding of the requests. The replicas of the resource

are organized as a group. The group always has one

replica that has been “elected” to serve as the central

arbitrator (i.e. coordinator) to keep the integrity between

the replicas of the resource and response on the new

requests. Every replica has identifiers: Coordinator, and

Tcoor to assign the current coordinator and its Start_Time.

Initially, the first created replica will be the coordinator.

When a replica receives an incoming message from the

requesting nodes (e.g. REQUEST, RELEASE) or

RECOVER messages from other replica, the first course

of action is to determine if it is the coordinator or not. If

replica is the coordinator, it sends the suitable answer to

source of message (e.g. RESPONSE, UPDATE). On the

other hand, if the replica finds that the coordinator is not

active, it begins the election operation; otherwise, it just

passes the message to coordinator.

The coordinator election
We proposed a simple and efficient algorithm to elect the

next coordinator. It consists of appointing a replica-

coordinator from an initial configuration in which all

replicas are in the same state, that is, all are candidates

and can become a coordinator. When any replica

discovers that the current coordinator failed, it sends the

message IAMCOORDINATOR to all active replicas.

When the other replicas receive the message it simply

appoints the new coordinator. The algorithm solves the

problem of concurrent issuing electing using more than

one replica by assigning the last one according to its

timestamp. We use timing as proposed by Lamport in

[15]. Fig.1 explains pseudo-code of the election

operation.

Recovering the memory
After crashing, when the replica re-enters the system it

in the beginning sends the message “RECOVER” to all
active replicas. When the coordinator receives the
message, it directly sends UPDATE message to the new
replica. But if any other replicas receive the message,
they firstly check if the coordinator is active or not. If the
coordinator is not active, the replica must begin
ELECTION operation in order to find a new coordinator.
Then the replica completes the recover operation; it just
passes the message to the coordinator, because just the
coordinator can response to “RECOVER” message by
sending UPDATE message to the source of the message.
The recover operation is explained in fig.1.

Client side pseudo-code:

Timestamp=GETTIMESTAMP();//state variable saves initial node’s

clock.

//requsting:

incrementTimeStamp();

for each ri in replicas r

 Send (REQUEST,timestamp) to ri ;

// releasing:

IncrementTimeStamp();

for each ri in replicas r
 Send (RELEASE,timestamp) to ri ;

for each Ci in Queue q

 Send (RELEASE,timestamp) to Ci ;

onDeliver(from,msg){

switch msg.type is

 RESPONSE:

 if (msg.resource_avialabe) enterCriticalSection();

 else {queue=msg.queue;

queue[R].insert(myId,msg.timestamp);}

 RELEASE:

 unLockResource(R);

 owner[R]=queue[R].removeFirst();

 if (owner[R]== myId) enterCriticalSection();

 if(owner[R]!=nill) lockResource(R);

 ADDREQUEST:

 Queue[R].insert(msg.sourc1e,msg.timestamp);

 PING: send(msg.from,myId)

}

Replica side pseudo-code:

Coordinator, Tcoor; //state variables used in all replicas of resource.

Periodically:

 Send (PING) to Coordinator;

 Wait periodOfTime();

Active(Id){

 Send (PING) to Id;

Wait(periodTime)

If receive ok Return true; Else return false;}

Updating(){

for all active ri in replicas r

 Send (RECOVER,timestamp) to ri ;}

Election(){
 For all active ri in replicas r

Send (IAMCOORDINATOR, timestamp) to ri ;}

onDeliver(from,msg){

 switch. Msg.type is

 IAMCOORDINATOR:
If (msg.timeStamp> Tcoor){

 Coordinator=messege.from;

 Tcoor =message.timeStamp;}

 RECOVER:// rebuild memory

 If (received (msg) break;

 If (msg.from==Coordinator || !active (Coordinator))

 Election();//current coordinator failed

 If (myId==Coordinator) send(UPDATE) to message.from;

 Else send (RECOVER, message.from) to Coordinator;

 PING: send (msg.from,Ok);

 REQUEST:

 if (received (msg) break;

 if(myId==Coordinator){ send(RESPONSE) to msg.from;

 if (!available(resource)){

 for each ri in replicas r

 Send (ADDREQUEST,msg.timestamp) to ri ;

 for each Ci in Queue q

 Send (ADDREQUEST,msg.timestamp) to Ci ;}

 }

 else if (active(Coordinator)) Send (REQUEST) to Coordinator;

 else{ Election();

 Send (REQUEST) to Coordinator;

 }}

Fig 1. The proposed mutual exclusion protocol

The requesting operation
Any node wanting to request a resource does so by

issuing its request to the group of replicas. The set of

responsible replicas for a given resource can be found

Decentralized and Fair Mutual Exclusion Protocol in Peer-to-Peer Systems

4

using the Peer-to-Peer Replica Location Services (P-

RLS), as in [16]. The coordinator listens to such requests,

processes and responds to them appropriately. Only the

coordinator makes a decision regarding the resource

request, it sends the responding message to requester; the

message must contain the queue and the current owner of

critical section. In addition, it sends ADDREQUEST

message to all requesters that are waiting in the queue and

to the entire group of replicas. The requesting node, upon

receipt of this response, enters the critical section if it has

been determined by the coordinator that the resource is

available (i.e. the resource is free and queue is empty).

All nodes (other than the node that has been granted

access to the resource) simply mark the resource as “in

use” and wait when the node exits the critical section to

broadcast a release message before attempting to request

the resource again. The operations of the protocol are

described in details below:

1. Node A, wishing to enter the critical section, sends a

REQUEST to the group of replicas requesting the use

of resource R.

2. Node Q, which is currently acting as the coordinator

for the group of replicas, receives the request for

resource R from Node A. Node Q determines that

resource R is available and locks resource R for Node

A. At the same time, Node B issues a request for

resource R as well. Before dealing with the next

incoming message (which is Node B’s request for

resource R), Node Q sends its response (i.e.

ADDREQUEST) to the requesters and to other

replicas regarding the status of resource R (i.e. the

response message contains status of resource, and

queue of requests). A complete queue of requests is

maintained at all requesters and replicas.

3. Node “A” receives the response from the coordinator

and notices that the coordinator has granted access to

resource R for Node “A“ (i.e. queue of requests is

empty and the resource is available). Node “A” enters

the critical section and begins to use resource R. At

the same time, Node B also receives the response and

sees that resource R is used by Node “A”. It marks

resource R as “in use” and enters the request into its

queue.

4. Upon finishing its work in the critical section, Node

“A” issues a RELEASE message to the entire queue

of requests and coordinator, indicating that it is done

using the critical section. All nodes, including Node

“B”, mark resource R as being available again. Node

“B” is now free to issue a request for resource R.

5. Steps 1-4 are repeated as nodes wish to access the

critical section of the system.

4.2. The node’s internal state

The node’s internal state information includes its myId,

the owner of the resource (i.e. Owner), the variable

OwnerT , which stores the timestamp of the request; the list

Queue, which stores the time stamped order of waiting

clients (requesters). We use Lamport’s logical clock to

generate timestamp, as in [15]. The information in the

clients and replicas is consistent because the protocol

uses the Coordinator to coordinate between them.

4.3. Types of messages

The communication between the requesting nodes and

replicas of the resource is done by the following types of

messages:

1. Message type of REQUEST. It is sent by a client to

replicas. If the message is received by the coordinator,

the coordinator responds to the message by sending

RESPONSE message with the status of the resource. If

the resource is free, the coordinator locks the resource

and informs the other replicas. But if the resource is

busy, the coordinator adds the request to waiting

queue and also sends ADDREQUEST message to all

replicas and the nodes which have requests in queue.

When any replica receives a REQUEST message, it

pings the coordinator if it is active or not. If the

coordinator is active the replica passes the request to

it, else the current replica does the election.

2. Message type of RESPONSE. It is received by the

requesting node from the coordinator. The message

contains the status of resource, the queue of requests.

As a result, a new node just waits until receiving

RELEASE (token) message from previous owner. It

may directly enter CS if the resource was unlocked.

3. Message type of ADDREQUEST. When a node

receives this type of message, it adds the request into

the queue, but if the queue is empty and the resource

is free, the requester will be directly the owner.

4. Message type of RELEASE. It is routed from the

current owner of the resource to waiting nodes in the

queue. If the current client is the owner, it succeeds

and gets the permission to enter CS directly. Someone

else does win but not this element. This element does

nothing because it knows it has already been

registered in the queue. It will enter later and now it is

just waiting.

4.4. Failure Handling

The proposed protocol works under failure-free

environments. Any node in the system may crash and the

nodes communicate via messages across unreliable

channels. In the following, we will explain how the

protocol may solve the different types of failures:

1. Failure of node currently presented in critical section.

This case is solved by applying the principle leasing,

as in [12]: the client is granted permission to enter CS

for a specific time. When the lease expires, the next

requester in queue will get the permission. The node

can estimate the waiting time in queue in advance (i.e.

Workshop on Computer Science and Information Technologies CSIT’2008, Antalya, Turkey, 2008

5

forecasting waiting time csw tlt  , where l is the

number of nodes in queue, cst - time in critical

section)

2. Failure of requester or replica during different

communications. This failure is detected by the

“PING/ACK” mechanism between the sender and

receiver.

3. The unreliable communication channel between nodes

of the system will cause similar problems as well. The

lost messages in all protocols are detected using a

“PING/ACK” scheme, with constant overhead.

4. Failure of the coordinator discovered by any other

replica when the replica needs to connect with it for

updating memory or passing the requesting messages.

4.5. Correctness of the Proposed Protocol

Correctness of P2P DME protocols can be guaranteed if

the requirements of safety, liveness, and ordering

(fairness) are upheld, that is established through the

following lemmas.

Lemma 1. The proposed protocol ensures that node p

can enter CS, if it satisfies one of the following cases:

a. If it received the authority from the coordinator by

the RESPONSE message.

b. If it received the RELEASE “token” message, and it

requested at the front of the queue (i.e. p=q[1])

where q is queue of waiting requests.

Proof a: this case happens when a new client requests to

enter CS, and if CS is free. At the beginning, the client

doesn’t have the queue of requests, so, as the responses

arrive at client, it gradually forms the idea about its place

in race. The coordinator answers the requester by sending

RESPONSE message that contains the queue of waiting

requesters and/or state of resource if it is available or not.

If resource is available, then the client will be the owner

and it can enter CS, else the client will wait and it will use

CS according to case b.

Proof b: in this case, the client p has already got the

queue of request and its request is already waiting its turn

in the queue q, which is ordered according to time-stamp.

After the RELEASE “token” message is received, the

first node in the queue q is granted to access the CS and

others just wait. So, if the node p is at the front of q (i.e.

p=q(1)), it will be the new winner to access CS.

Lemma 2. The new protocol ensures mutual exclusion.

Proof 2: the replicas and requesting nodes of the

resource iR maintain a complete waiting queue ordered

with time-stamp. Only the first element in queue can enter

CS (see Lemma 1.b), and when it exits the critical

section, it sends a release message to waiting clients in

line, so the following requester can enter CS. Hence the

lemma follows. For the new client, it may enter CS if it

receives authority from the coordinator of replicas (see

Lemma 1.a).

Lemma 3. The protocol is deadlock-free.

Proof 3: Deadlocks are avoided by using “ping/ack”

mechanism and the principle of leasing.

Lemma 4. The protocol is starvation-free.

Proof 4: a node cannot wait indefinitely long because the

requests are ordered by timestamp and all the requesting

nodes and replicas maintain the requesting queue. Only

the coordinator of replicas can give grant to enter CS.

Theorem 1. The new protocol is correct.

Proof theorem 1: Follows directly from Lemmas 2 – 4.

5. Experimental Results

The proposed and the existing protocols have been

implemented over the FreePastry [17] implementation.

The test-bench code starts off by creating a set of nodes,

arranged according to the Pastry network topology. The

simulation then runs for a certain number of rounds and

derives the experimental results by over ten such runs in

average. In the simulation, the concept of a round is

introduced in order to describe the amount of work done

by the nodes in the network, which includes a certain

number of requests for resources being issued by a set of

randomly chosen nodes. Also in each round, a node

randomly releases 50% of its held resources.

5.1. Scalability

The main goal of the proposed protocol was to come up

with an efficient and scalable method for achieving DME.

Fig.2 presents a comparison of the proposed protocol

with exiting protocols. Even though the plots are linear

with respect to the number of nodes, the proposed

protocol requires about 2 times fewer messages than the

E2E protocol in average. The number of resources,

replicas and requests per round are held constant at 65,

10, and 20 respectively; the number of rounds is 20.

5.2. High Churn Rate

Rate of churn is defined as the sum of nodes that are in

transition (i.e., either leaving or joining the system per

round). In our simulation with a number of nodes =2000,

n/2 randomly chosen nodes are failed and n/2 new nodes

are added to the system, where n is the desired churn rate.

Requesters are not churned in our experiments. Fig. 3

shows the effect of increasing the rate of churn from 0 to

1000 on the overall message overhead. The new protocol

experience is a linear increase in message overhead when

the rate of churn increases.

6. Conclusion

In this work, we have proposed a new protocol for

achieving DME in a P2P system in order to satisfy

fairness and decentralization, in addition, to reduce the

message overhead. We have presented a novel method

which uses a coordinator between replicas of the resource

to keep the consistency between them in order to satisfy

the requirement “fairness”. The protocol also presents a

way for local decision-making. It is able to keep the load

on the replicas relatively low even in the presence of a

growing network and high churn rates. The protocol can

Decentralized and Fair Mutual Exclusion Protocol in Peer-to-Peer Systems

6

be easily configured to run on any DHT; and

consequently provide a truly generalized solution for the

addressed problem.

0

10000

20000

30000

40000

50000

60000

70000

500 1000 2000 3000 4000 5000 6000

Number of Nodes

N
u

m
b

e
r

o
f

M
e
s
s
a
g

e
s

NonE2E protocol
Sigma protocol
E2E protocol
Proposed protocol

Fig 2.Comparison between the protocols: scalability,

message overhead

0

5000

10000

15000

20000

25000

0 50 200 333 500 666 1000

Rate of churn

N
u

m
b

e
r

o
f

m
e
s
s
a
g

e
s

The proposed protocol

Fig 3.Effect of Churn on message overhead

References

1. E. W. Dijkstra, “Solution of a problem in concurrent

programming control”, Communications ACM, vol. 8,

9 (Sept. 1965), p.569.

2. M. G. Velazquez. “A Survey of Distributed Mutual

Exclusion Algorithms”. Colorado State University,

Technical Report CS-93-116.

3. M. Raynal, “A simple taxonomy for distributed

mutual exclusion algorithms”, ACM SIGOPS

Operating Systems Review. Vol. 25,1991, pp.47-50.

4. А. А Обейдат., В. В. Губарев, “Обзор алгоритмов

распределенного взаимного исключения в

динамических пиринговых системах”, Сборник

Научных Трудов НГТУ. vol. 2(48), 2007,pp. 63-68.

5. Shiding Lin, Qiao Lian, Ming Chen, and Zheng

Zhang”, A practical distributed mutual exclusion

protocol in dynamic peer-to-peer systems”. In 3rd

International Workshop on Peer-to-Peer Systems

(IPTPS'04), 2004.

6. Moosa Muhammad. “Efficient Mutual Exclusion in

Peer-To-Peer Systems”. University of Illinois at

Urbana-Champaign, 2005.

7. D. Agrawal and A. El Abbadi,” An efficient solution

to the distributed mutual exclusion problem”, in Proc.

8th ACM Symposium on Principles of Distributed

Computing, 1989, pp. 193-200.

8. M. Maekawa, “A √N algorithm for mutual exclusion

in decentralized systems”, ACM Transactions on

Computer Systems, 1985 ,pp. 145-159.

9. G. Ricart and A. K. Agrawala, “An optimal algorithm

for mutual exclusion in computer networks”,

Communications of the ACM, , 1981, pp. 9-17.

10. M. Singhal,” A dynamic information structure mutual

exclusion algorithm for distributed systems”. IEEE

Transactions on Parallel and Distributed Systems ,

1992 ,pp. 121-125.

11. J. M. Helary and N. Plouzeau and M. Raynal, “A

distributed algorithm for mutual exclusion in an

arbitrary network”, volume 31 of Computer Journal,

,1988 ,pp. 289-295.

12. A. J. Martin, “Distributed mutual exclusion on a ring

of processes”, Science of Computer Programming,

pp. 1985,256-276.

13. Korthikanti, Vijay Anand, Prateek Mittal, Indranil

Gupta. "Fair K Mutual Exclusion Algorithm for Peer

to Peer Systems", Proc. International Conference on

Distributed Computing Systems (ICDCS), 2008.

14. Md. Abdur Razzaque, Choong Seon Hong. Multi-

“Token Distributed Mutual Exclusion Algorithm”,

22nd International Conference on Advanced

Information Networking and Applications (AINA

2008) ,2008, pp. 963-970.

15. L. Lamport, “Time, clocks and the ordering of events

in a distributed system”, in Communications of the

ACM, vol. 21, 1978, pp.558-565.

16. Cai, M., Chervenak, A., and Frank, M. “A peer-to-

peer replica location service based on a distributed

hash table”, Proceedings of the SC2004 Conference,

November 2004.

17. FreePastry. http://freepastry.rice.edu/

View publication stats

http://kepler.cs.uiuc.edu/people?user=Vijay
http://kepler.cs.uiuc.edu/people?user=prateek
http://kepler.cs.uiuc.edu/people?user=indy
http://kepler.cs.uiuc.edu/people?user=indy
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/aina/&toc=comp/proceedings/aina/2008/3095/00/3095toc.xml
http://csdl2.computer.org/persagen/DLAbsToc.jsp?resourcePath=/dl/proceedings/aina/&toc=comp/proceedings/aina/2008/3095/00/3095toc.xml
https://www.researchgate.net/publication/305968845

